The frillneck lizard, Chlamydosaurus kingii, is a conspicuous component of the fauna of the wetdry tropics of northern Australia during the wet season, but it is rarely seen in the dry season. Previous studies have demonstrated that during the dry season the field metabolic rate (FMR) is only about one-quarter of the wet-season rate, and one factor involved in this seasonal drop is a change in the behavioural thermoregulation of the species such that lower body temperatures (T s) are selected during dry-season days. Here we examine other factors that could be responsible for the seasonal change in FMR: standard metabolic rates (SMR) and activity. Samples from stomach flushing revealed that the lizards in the dry season continued to feed, but the volume of food was half as much as in the wet season. SMR in the laboratory was 30% less in the dry season. During the dry season, the energy expended by the lizards is 60.4 kJ kg day less than during the wet season. Combining laboratory and field data, we determined the relative contribution of the factors involved in this energy savings: 10% can be attributed to lower nighttime T , 12% is attributable to lower daytime T , 12% is attributable to decreased metabolism, and the remaining 66% is attributable to other activities (including e.g. locomotion, reproductive costs, digestion). Calculations indicate that if FMR did not drop in the dry season the lizards would not survive on the observed food intake during this season. Seasonal analysis of blood plasma and urine indicated an accumulation of some electrolytes during the dry season suggesting modest levels of water stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00334406 | DOI Listing |
Sci Adv
January 2025
Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil.
Stable understory microclimates within undisturbed rainforests are often considered refugia against climate change. However, this assumption contrasts with emerging evidence of Neotropical bird population declines in intact rainforests. We assessed the vulnerability of resident rainforest birds to climatic variability, focusing on dry season severity characterized by hotter temperatures and reduced rainfall.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Agriculture, Postgraduate Program in Agroecology, Federal University of Paraiba, Bananeiras, PB, Brazil.
The influence of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and physiology of Phaseolus vulgaris L. and Zea mays L. in the Brazilian tropical seasonal dry forest is not well known.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Faculty of Resources Management, Thai Nguyen University of Agriculture and Forestry, Mo Bach Str, Thai Nguyen City, Thai Nguyen Province, 250000, Vietnam.
Drought is a reoccurring natural phenomenon that presents significant challenges to agricultural production, ecosystem stability, and water resource management. The Central Highlands of Vietnam, a major region of industrial crops and vegetation ecosystems, has become increasingly vulnerable to drought impacts. Despite this vulnerability, limited research has explored the specific characteristics of drought and its seasonal effects on vegetation ecosystems in the region.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Faculty of Water Supply and Environmental Engineering, Arba Minch University Water Technology Institute, P.O.B 21, Arba Minch, Ethiopia.
In developing nations, the biggest threat to public health is the quality of the water. The Kulfo River provides the majority demand of the domestic water and irrigation along its course; however, it is observed that wastes from anthropogenic and natural activities enter the river. Therefore, this study aimed to examine the pollution status by integrating conventional methods with benthic macroinvertebrates.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique.
Seasonally dry tropical woodlands are vital for climate change mitigation, yet their full potential in carbon storage remains poorly understood. This is largely due to the lack of species-specific allometric models tailored to these ecosystems. To address this knowledge gap, this study aimed to develop species-specific biomass allometric equations (BAEs) for accurately estimating both above- and below-ground biomass of Colophospermum mopane (J.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!