The giant rhizomatous grass Gynerium sagittatum is an early successional species that forms dense monocultures in Peruvian Amazon floodplains. We studied the shoot population structures by recording shoot densities and shoot heights. Leaf areas and stem volumes were allometrically estimated. Stands of two varieties of G. sagittatum were examined that differ in height and in the degree of shoot branching. In stands of increasing age, marked decreases in shoot densities were accompanied with an increase in mean shoot size. Self-thinning was indicated by the negative correlation between log stem volume per unit ground area and log shoot density, significant at least for one of the two varieties. The difference in thinning slope between the varieties could be largely accounted for by their different shoot geometry, as was revealed by calculations based on the allometric model of Weller (1987b). The relationship between log leaf area per shoot and log shoot density was significantly negative with slopes close to -1. Shoot size inequalities decreased with increasing mean stem volume per shoot, probably as a result of density-dependent mortality of the smaller shoots. All of these results accord with expectations for shoot self-thining. Gynerium sagittatum is the first clear example of a clonal plant species that exhibits self-thining in natural monospecific stands. It is argued that self-thinning occurs in this giant tropical grass because its shoots are perennial and do not experience seasonal die-back (periodic density-independent mortality), in contrast to many of the clonal plant species that have been studies so far.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00328909 | DOI Listing |
Protoplasma
January 2025
Botany Unit (SAIF & R), CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
Eclipta prostrata belongs to the Asteraceae family. The plant contains bioactive compounds like wedelolactone (WDL) and demethylwedelolactone (DW). Its transcriptomic information engaged with secondary metabolite biosynthesis is not available.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province 110866, China.
1-Aminocyclopropane-1-carboxylic acid (ACC) is a direct precursor of phytohormone ethylene. We used a phenyl isothiocyanate (PITC) derivatization modification method combined with spectrographic analysis to isolate and identify three products of the derivatization reactions of ACC and PITC. The MRM mode of UPLC-MS/MS was used to establish the analysis of 6-phenyl-5-thioxo-4,6-diazaspiro[2.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
Various technical methodologies are required to accurately detect substances of different chemical and pharmacological properties in biological samples, which are increasing in number and variety daily. Therefore, laboratories where many samples and different factors are analyzed simultaneously need methods with easy sample preparation, short analysis times and low analysis costs. In this study, the objective was to scan substances susceptible to chemical degradation, amenable to analysis without hydrolysis, and exhibiting short-term stability by employing a straightforward, expeditious, and cost-efficient method.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, China.
The tea mosquito bug, Waterhouse (Hemiptera: Miridae), is a devastating piercing-sucking pest in tropical tea plantations. The Hainan Dayezhong (HNDYZ) is a large-leaf tea cultivar widely cultivated around the Hainan tea region in South China. However, information regarding the feeding damage of on the HNDYZ tea plant remains scarce.
View Article and Find Full Text PDFEcology
January 2025
Tennenbaum Marine Observatories Network, Smithsonian Environmental Research Center, Edgewater, Maryland, USA.
Disease is a key driver of community and ecosystem structure, especially when it strikes foundation species. In the widespread marine foundation species eelgrass (Zostera marina), outbreaks of wasting disease have caused large-scale meadow collapse in the past, and the causative pathogen, Labyrinthula zosterae, is commonly found in meadows globally. Research to date has mainly focused on abiotic environmental drivers of seagrass wasting disease, but there is strong evidence from other systems that biotic interactions such as herbivory can facilitate plant diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!