Physiological and growth measurements were made on forbs and graminoids following additions of water and N+water in a graminoid-dominated dry meadow and a forb-dominated moist meadow, to determine if the community-level response was related to differential responses between the growth forms. Graminoids had higher photosynthetic rates and lower transpiration rates and foliar N concentrations than forbs, and consequently maintained higher photosynthetic N- and water-use efficiencies. Photosynthetic rates, stomatal conductance, and transpiration rates increased significantly only in response to N fertilization and only in moist meadow species. The increase in photosynthetic rates was unrelated to variation in foliar N concentration, but instead correlated with variation in stomatal conductance. Growth based N-use efficiency was higher in moist meadow graminoids than in moist meadow forbs, but did not differ between the growth forms in the dry meadow. The moist meadow community had higher biomass and N standing crops, but the relative increase in these factors in response to N fertilization was greater in the dry meadow. Graminoids had a greater relative increase in biomass and N accumulation than forbs following N fertilization, but moist meadow graminoids exhibited a greater response than dry meadow graminoids. The difference in the growth response between the dry meadow and moist meadow graminoids to N fertilization was correlated with more conservative leaf gas exchange responses in dry meadow species, presumably related to a higher frequency of soil water deficits in this community. Community-level response to the resource additions was therefore mediated by the plant growth form response, corresponding with differences between the growth forms in physiological factors related to resource acquisition and use.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00317287DOI Listing

Publication Analysis

Top Keywords

moist meadow
28
dry meadow
24
meadow graminoids
20
growth forms
16
meadow
13
photosynthetic rates
12
growth
8
plant growth
8
response
8
community-level response
8

Similar Publications

Insular environment-dependent introgression from an arid-grassland orchid to a wetland orchid on an oceanic island.

Evol Lett

December 2024

Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan.

Adaptive introgression plays a vital role in allowing recipient species to adapt and colonize new environments. However, our understanding of such environment-dependent introgressions is primarily limited to specific plant taxa in particular settings. In Japan, two related orchid species, the autonomously self-pollinating and the outcrossing , typically inhabit dry grasslands and wetlands, respectively.

View Article and Find Full Text PDF

Density dependence and habitat filtering have been proposed to aid in understanding community assembly and species coexistence. Phylogenetic relatedness between neighbors was used as a proxy for assessing the degree of ecological similarity among species. There are different conclusions regarding the neighborhood effect in previous studies with different phylogenetic indices or at different spatiotemporal scales.

View Article and Find Full Text PDF

While hybridization was viewed as a hindrance to adaptation and speciation by early evolutionary biologists, recent studies have demonstrated the importance of hybridization in facilitating evolutionary processes. However, it is still not well-known what role spatial and temporal variation in natural selection play in the maintenance of naturally occurring hybrid zones. To identify whether hybridization is adaptive between two closely related monkeyflower species, and , we performed repeated reciprocal transplants between natural hybrid and pure species' populations.

View Article and Find Full Text PDF

The application of Near Infrared (NIR) spectroscopy for analyzing wet feed directly on farms is increasingly recognized for its role in supporting harvest-time decisions and refining the precision of animal feeding practices. This study aims to evaluate the accuracy of NIR spectroscopy calibrations for both undried, unprocessed samples and dried, ground samples. Additionally, it investigates the influence of the bases of reference data (wet vs.

View Article and Find Full Text PDF

The soil microbiome affects patterns of local adaptation in an alpine plant under moisture stress.

Am J Bot

March 2024

Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, 70118, LA, USA.

Premise: The soil microbiome plays a role in plant trait expression and fitness, and plants may be locally adapted or maladapted to their soil microbiota. However, few studies of local adaptation in plants have incorporated a microbial treatment separate from manipulations of the abiotic environment, so our understanding of microbes in plant adaptation is limited.

Methods: Here we tested microbial effects on local adaptation in four paired populations of an abundant alpine plant from two community types, dry and moist meadow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!