OBJECTIVE To assess the effects of age, body condition score (BCS), and muscle condition score (MCS) on radial and coccygeal systolic arterial blood pressure (SAP) in cats. DESIGN Prospective randomized trial. ANIMALS 66 privately owned cats enrolled between May and December 2010. PROCEDURES BCS and MCS of cats were assessed by 2 investigators; SAP was measured via Doppler ultrasonic flow detector, with cats positioned in right lateral or sternal recumbency for measurements at the radial or coccygeal artery, respectively, with order of site randomized. Associations among variables were assessed through correlation coefficients, partial correlation coefficients, and ANCOVA. RESULTS Interrater reliability for BCS and MCS assessment was high (correlation coefficients, 0.95 and 0.83, respectively). No significant effect was identified for order of SAP measurement sites. Coccygeal and radial SAP were positively correlated (ρ = 0.45). The median difference in coccygeal versus radial SAP was 19 mm Hg, but differences were not consistently positive or negative. Radial SAP was positively correlated with age (ρ = 0.48) and negatively correlated with MCS (ρ = -0.30). On the basis of the correlation analysis, the association between radial SAP and MCS reflected the confounding influence of age. Coccygeal SAP was not significantly correlated with age, BCS, or MCS. CONCLUSIONS AND CLINICAL RELEVANCE Use of the coccygeal artery is recommended to reduce the confounding effects of age and sarcopenia on Doppler ultrasonographic SAP measurements in cats. Additionally, monitoring for changes in MCS is recommended for cats undergoing serial SAP measurement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/javma.250.7.763 | DOI Listing |
Plant Biol (Stuttg)
December 2024
Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany.
Temperate mixed forests are currently experiencing severe drought conditions and face increased risk of degradation. However, it remains unclear how critical tree physiological functions such as sap flow density (SFD) and tree water deficit (TWD, defined as reversible stem shrinkage when water is depleted), respond to extreme environmental conditions and how they interact under dry conditions. We monitored SFD and TWD of three co-occurring European tree species (Fagus sylvatica, Fraxinus excelsior and Acer pseudoplatanus) in dry conditions, using high temporal resolution sap flow, dendrometer, and environmental measurements.
View Article and Find Full Text PDFActa Cardiol
December 2024
Department of Cardiology, Fayoum University Hospital, Fayoum, Egypt.
Ying Yong Sheng Tai Xue Bao
September 2024
Baiyinaobao National Nature Reserve Management Administration, Chifeng 025300, Inner Mongolia, China.
In this study, we applied thermal dissipation probe technology to examine sap flow in various directions (east, south, west, and north) and at different depths (0-2, 2-4, 4-6 cm) within the stem of natural trees in the eastern of Otindag Sandy Land to provide a scientific basis for accurately quantifying water consumption of forests through transpiration and to enhance the understanding of water relations. The results showed that the diurnal variation of sap flow in different directions displayed a unimodal curve, with the sap flow sequence being south>east>west>north. The sap flow at different sapwood depths exhibited an obvious unimodal curve, with a significant decrease as sapwood depth increased.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2024
Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China. Electronic address:
Front Plant Sci
August 2024
Department of Silviculture, University of Applied Forest Sciences, Rottenburg am Neckar, Germany.
Introduction: Soil drought during summer in Central Europe has become more frequent and severe over the last decades. European forests are suffering increasing damage, particularly Norway spruce. Douglas-fir ( (Mirbel) Franco), a non-native tree species, is considered as a promising alternative to build drought-resilient forests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!