The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R_{2γ}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5  fb^{-1} was collected. In the extraction of R_{2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R_{2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.092501DOI Listing

Publication Analysis

Top Keywords

hard two-photon
8
elastic cross
8
two-photon contribution
4
contribution elastic
4
elastic lepton-proton
4
lepton-proton scattering
4
scattering determined
4
determined olympus
4
olympus experiment
4
experiment olympus
4

Similar Publications

Fibrous meningiomas, a common type of brain tumor, present surgical challenges due to their variable hardness, which is crucial for complete resection and patient prognosis. This study explores the use of label-free multiphoton microscopy (MPM) for the objective assessment of the texture of fibrous meningiomas. Fresh tumor samples from 20 patients were analyzed using both multichannel and lambda mode MPM, with quantitative image analysis algorithms determining collagen content and multi-peak spectral fitting providing additional optical collagen metrics.

View Article and Find Full Text PDF
Article Synopsis
  • Wood is a sustainable material but faces challenges like poor mechanical performance and moisture sensitivity, limiting its use in advanced engineering.
  • Researchers developed a method to fabricate densified wood using deep eutectic solvents, enhancing its strength and water resistance significantly.
  • The densified wood exhibits over 50% increased flexural strength and 100% improved surface hardness, making it a promising alternative for structural applications.
View Article and Find Full Text PDF

Computational quantification reduces observer-related variability in histological assessment of metabolic dysfunction-associated steatotic liver disease (MASLD). We undertook stain-free imaging using the SteatoSITE resource to generate tools directly predictive of clinical outcomes. Unstained liver biopsy sections (n = 452) were imaged using second-harmonic generation/two-photon excitation fluorescence (TPEF) microscopy, and all-cause mortality and hepatic decompensation indices constructed.

View Article and Find Full Text PDF

Sub-Micron Replication of Fused Silica Glass and Amorphous Metals for Tool-Based Manufacturing.

Adv Sci (Weinh)

September 2024

Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79108, Freiburg im Breisgau, Germany.

The growing importance of submicrometer-structured surfaces across a variety of different fields has driven progress in light manipulation, color diversity, water-repellency, and functional enhancements. To enable mass production, processes like hot-embossing (HE), roll-to-roll replication (R2R), and injection molding (IM) are essential due to their precision and material flexibility. However, these processes are tool-based manufacturing (TBM) techniques requiring metal molds, which are time-consuming and expensive to manufacture, as they mostly rely on galvanoforming using templates made via precision microlithography or two-photon-polymerization (2PP).

View Article and Find Full Text PDF

Colloidal crystals are used to understand fundamentals of atomic rearrangements in condensed matter and build complex metamaterials with unique functionalities. Simulations predict a multitude of self-assembled crystal structures from anisotropic colloids, but these shapes have been challenging to fabricate. Here, we use two-photon lithography to fabricate Archimedean truncated tetrahedrons and self-assemble them under quasi-2D confinement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!