a-b Anisotropy of the Intra-Unit-Cell Magnetic Order in YBa_{2}Cu_{3}O_{6.6}.

Phys Rev Lett

Laboratoire Léon Brillouin, CEA-CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.

Published: March 2017

Within the complex phase diagram of the hole-doped cuprates, seizing the nature of the mysterious pseudogap phase is essential for unraveling the microscopic origin of high-temperature superconductivity. Below the pseudogap temperature T^{⋆}, evidence for intra-unit-cell orders breaking the fourfold rotation symmetry have been provided by neutron diffraction and scanning tunneling spectroscopy. Using polarized neutron diffraction on a detwinned YBa_{2}Cu_{3}O_{6.6} sample, we here report a distinct a-b anisotropy of the intra-unit-cell magnetic structure factor below T^{⋆}, highlighting that intra-unit-cell order in this material breaks the mirror symmetry of the CuO_{2} bilayers. This is likely to originate from a crisscrossed arrangement of loop currents within the CuO_{2} bilayer, resulting in a bilayer mean toroidal axis along the b direction.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.097003DOI Listing

Publication Analysis

Top Keywords

a-b anisotropy
8
anisotropy intra-unit-cell
8
intra-unit-cell magnetic
8
neutron diffraction
8
intra-unit-cell
4
magnetic order
4
order yba_{2}cu_{3}o_{66}
4
yba_{2}cu_{3}o_{66} complex
4
complex phase
4
phase diagram
4

Similar Publications

Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness.

View Article and Find Full Text PDF

Status in Brain Gliomas Can Be Predicted by the Spherical Mean MRI Technique.

AJNR Am J Neuroradiol

January 2025

Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic.

Background And Purpose: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization.

Materials And Methods: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the status and histologic grade of adult-type diffuse gliomas.

View Article and Find Full Text PDF

Photoacoustic imaging (PAI) is a developing image modality that benefits from light-matter interaction and low acoustic attenuation to provide functional information on tissue composition at relatively large depths. Several studies have reported the potential of dichroism-sensitive photoacoustic (DS-PA) imaging to expand PAI capabilities by obtaining morphological information of tissue regarding anisotropy and predominant orientation. However, most of these studies have limited their analysis to superficial scanning of samples, where fluence effects are negligible.

View Article and Find Full Text PDF

Besides the symmetry breaking of Janus transition metal dichalcogenides (TMDs), Janus-based Diluted Magnetic Semiconductors (DMS) are attractive to study considering the local symmetry of transition metal (TM) dopant/adatom. This study conducts a first-principles calculation of magnetic properties in TM (V, Cr, Mn, Fe, and Co) -- doped and adsorbed Janus WSSe. Our results reveal that TM's atomic/ionic size impacts d-p-d orbital overlap, affecting bond length/angle and defect state positions.

View Article and Find Full Text PDF
Article Synopsis
  • 2D materials, such as transition metal-dichalcogenides like MoS, have gained significant attention for their unique layered structures, which lead to distinct physicochemical properties when isolated as single layers compared to their bulk forms.
  • The ability to stack and twist these layers creates new phenomena, such as Moiré patterns, while misfit layer compounds (MLCs) introduce unconventional lattice structures that allow for the formation of nanotubes.
  • The stability and behavior of these nanostructures, particularly under elevated temperatures, are important aspects that remain underexplored, prompting studies using advanced techniques like electron microscopy and synchrotron-based X-ray methods to understand their decomposition and recrystallization processes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!