Within the complex phase diagram of the hole-doped cuprates, seizing the nature of the mysterious pseudogap phase is essential for unraveling the microscopic origin of high-temperature superconductivity. Below the pseudogap temperature T^{⋆}, evidence for intra-unit-cell orders breaking the fourfold rotation symmetry have been provided by neutron diffraction and scanning tunneling spectroscopy. Using polarized neutron diffraction on a detwinned YBa_{2}Cu_{3}O_{6.6} sample, we here report a distinct a-b anisotropy of the intra-unit-cell magnetic structure factor below T^{⋆}, highlighting that intra-unit-cell order in this material breaks the mirror symmetry of the CuO_{2} bilayers. This is likely to originate from a crisscrossed arrangement of loop currents within the CuO_{2} bilayer, resulting in a bilayer mean toroidal axis along the b direction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.097003 | DOI Listing |
J Mol Graph Model
January 2025
Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 P. Sevak St., Yerevan, 0014, Armenia.
Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
Department of Neurosurgery and Neurooncology (M.M., A.B., T.M., D.K., D.N.), First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic.
Background And Purpose: Diffuse gliomas, a heterogeneous group of primary brain tumors, have traditionally been stratified by histology, but recent insights into their molecular features, especially the mutation status, have fundamentally changed their classification and prognosis. Current diagnostic methods, still predominantly relying on invasive biopsy, necessitate the exploration of noninvasive imaging alternatives for glioma characterization.
Materials And Methods: In this prospective study, we investigated the utility of the spherical mean technique (SMT) in predicting the status and histologic grade of adult-type diffuse gliomas.
Photoacoustics
February 2025
Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, Eindhoven, The Netherlands.
Photoacoustic imaging (PAI) is a developing image modality that benefits from light-matter interaction and low acoustic attenuation to provide functional information on tissue composition at relatively large depths. Several studies have reported the potential of dichroism-sensitive photoacoustic (DS-PA) imaging to expand PAI capabilities by obtaining morphological information of tissue regarding anisotropy and predominant orientation. However, most of these studies have limited their analysis to superficial scanning of samples, where fluence effects are negligible.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Physics, Soongsil University, Seoul, 06978, South Korea.
Besides the symmetry breaking of Janus transition metal dichalcogenides (TMDs), Janus-based Diluted Magnetic Semiconductors (DMS) are attractive to study considering the local symmetry of transition metal (TM) dopant/adatom. This study conducts a first-principles calculation of magnetic properties in TM (V, Cr, Mn, Fe, and Co) -- doped and adsorbed Janus WSSe. Our results reveal that TM's atomic/ionic size impacts d-p-d orbital overlap, affecting bond length/angle and defect state positions.
View Article and Find Full Text PDFAcc Chem Res
November 2024
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!