Axis formation in half blastoderms of the chick: Stage at separation and the relative positions of fused halves influence axis development.

Rouxs Arch Dev Biol

Department of Cell and Animal Biology, The Institute of Life Sciences, The Hebrew University, 91904, Jerusalem, Israel.

Published: May 1996

The blastoderm of the avian embryo acts during the early stages of development as an integrative system programmed to form a single embryonic axis. Isolated parts of the blastoderm are known to each form an axis, owing to the system's properties. In the work reported here, the regulative capability of the right and left halves of chick blastoderms to form an embryonic axis was examined systematically at different stages. This revealed a progressive change in the developing blastoderm. After early separation, the axis in each half will form at some distance from the blastoderm's original midline, while with late separation the axis will form next to the original midline and may even lack one row of somites at the medial rim. Since development stops in culture after about 2 days, axis development after early separation ceases before somites are formed, whereas after late separation somites and brain vesicles can develop. In addition, an attempt was made to learn whether the two halves of blastoderm, when shifted along the midline and then reunited in staggered fashion, act as a single or two separate embryonic fields. When reunion of the right and left halves was achieved so that the posterior end of one half was adjoining the posterior area pellucida region of the other half, a single embryonic axis developed. When, on the other hand, the shift was larger so that the posterior end was fused to the central area pellucida of the other half, two separated embryonic axes developed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00377216DOI Listing

Publication Analysis

Top Keywords

embryonic axis
12
axis
9
axis development
8
single embryonic
8
left halves
8
early separation
8
separation axis
8
will form
8
original midline
8
late separation
8

Similar Publications

With the rapid advancement of plant phenotyping research, understanding plant genetic information and growth trends has become crucial. Measuring seedling length is a key criterion for assessing seed viability, but traditional ruler-based methods are time-consuming and labor-intensive. To address these limitations, we propose an efficient deep learning approach to enhance plant seedling phenotyping analysis.

View Article and Find Full Text PDF

Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.

View Article and Find Full Text PDF

Extracellular volume expansion drives vertebrate axis elongation.

Curr Biol

January 2025

Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA. Electronic address:

The vertebrate bauplan is primarily established via the formation of embryonic tissues in a head-to-tail progression. The mechanics of this elongation, which requires the presomitic mesoderm (PSM), remain poorly understood. Here, we find that avian PSM explants can elongate autonomously when physically confined in vitro, producing a pushing force promoting posterior elongation of the embryo.

View Article and Find Full Text PDF

MELK prevents radiofrequency ablation-induced immunogenic cell death and antitumor immune response by stabilizing FABP5 in hepatocellular malignancies.

Mil Med Res

January 2025

Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.

Background: Radiofrequency ablation (RFA) is an efficient treatment with unlimited potential for liver cancer that can effectively reduce patient mortality. Understanding the biological process related with RFA treatment is important for improving treatment strategy. This study aimed to identify the critical targets for regulating the efficacy of RFA.

View Article and Find Full Text PDF

Multiple roles for retinoid signaling in craniofacial development.

Curr Top Dev Biol

January 2025

Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States. Electronic address:

Retinoic acid (RA) signaling plays multiple essential roles in development of the head and face. Animal models with mutations in genes involved in RA signaling have enabled understanding of craniofacial morphogenic processes that are regulated by the retinoid pathway. During craniofacial morphogenesis RA signaling is active in spatially restricted domains defined by the expression of genes involved in RA production and RA breakdown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!