Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We describe the results of cell transplantation experiments performed to investigate mesodermal lineages in Drosophila melanogaster, particularly the lineages of the somatic muscles, the visceral muscles and the fat body. Cells to be transplanted were labelled by injecting a mixture of horseradish peroxidase (HRP) and fluorescein-dextran (FITC) in wild-type embryos at the syncytial blastoderm stage. For transplantation cells were removed from the ventral furrow, 8-12 min after the start of gastrulation, and individually transplanted into homotopic or heterotopic locations of unlabelled wild-type hosts of the same age. HRP labelling in the resulting cell clones was demonstrated histochemically in the fully developed embryo; histotypes could be distinguished without ambiguity. Mesodermal cells were already found to be committed to mesodermal fates at the time of transplantation. They developed only into mesodermal derivatives and did not integrate in non-mesodermal organs upon heterotopical transplantation. No evidence was found for commitment to any particular mesodermal organ at the time of transplantation. The majority of somatic muscle clones contributed cells to only one segment. However, clones were not infrequently distributed through two or even three segments. Clones of fat body cells were generally restricted to a small region. However, cells of clones of visceral musculature were widely distributed. With respect to the proliferative abilities of transplanted cells the clones were difficult to interpret due to the syncytial character of the somatic musculature and the fact that the organization of the other organs is poorly understood. Evidence from histological observations of developing normal embryos indicates only three mitoses for mesodermal cells. Clones larger than seven cells were not found when embryos were fixed previous to germ-band shortening; larger clones were found in the fat body and visceral musculature after fixing the embryos at the end of organogenesis. Quantitative considerations suggest that a few mesodermal cells might perform more than three mitoses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00376346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!