Cyclic nucleotide metabolism during amphibian forelimb regeneration : II. The protein kinases.

Wilehm Roux Arch Dev Biol

Department of Biology, Boston College, 02167, Chestnut Hill, MA, USA.

Published: May 1982

AI Article Synopsis

  • The study investigates the role of cAMP in limb regeneration by analyzing protein kinases in regenerating limb tissues.
  • Findings show that the activity of these kinases varies throughout regeneration, peaking during the mid-late bud stage.
  • The results indicate that while changes in protein kinase levels may not significantly regulate regeneration, cAMP likely influences differentiation and morphogenesis through its effects on histone phosphorylation.

Article Abstract

The hypothesis that cAMP mediates neural and endocrine influences on limb regeneration was examined by studying the protein kinases in regenerating limb tissues. Since these enzymes are the vehicles through which cAMP acts intracellularly, an understanding of changes in their concentrations and behaviors during regeneration can be instrumental in elucidating the role of cAMP in this process. Mean activities oscillated throughout regeneration with maximal activities being observed during the mid-late bud stage. The phosphorylation of histone, added to the assay, varied with the stage of regeneration-greatest activity occurring during the early bud stage and very weak activity during the palette and early digital stages. Histone actually appeared to inhibit endogenous phosphorylation during dedifferentiation. In addition, cAMP demonstrated different degrees of enhancement of histone phosphorylation during regeneration-producing its greatest effect at the palette stage and having the least effect at the early bud stage. The results of this study suggest that changes in the absolute amounts of protein kinase are probably not significant in the regulation of regeneration. In addition, the variable acceptability of histone as an exogenous substrate and the variations in the cAMP effects on phosphorylation suggest that physiological changes are occurring in which cAMP might play a significant role. In particular, these data suggest that cAMP might be instrumental in influencing events associated with differentiation and morphogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00848331DOI Listing

Publication Analysis

Top Keywords

bud stage
12
protein kinases
8
early bud
8
camp
7
regeneration
5
stage
5
cyclic nucleotide
4
nucleotide metabolism
4
metabolism amphibian
4
amphibian forelimb
4

Similar Publications

Tuning of sulfur flows and sulfur seed metabolism in oilseed rape facing sulfate limited conditions.

J Exp Bot

January 2025

Normandie Univ, UNICAEN, INRAe, UMR 950 Ecophysiologie Végétale, Agronomie & nutritions NCS, SFR Normandie Végétal (FED4277), 14032 Caen CEDEX 05, France.

The response of oilseed rape to sulfur (S) restriction usually consists of increasing the components of S utilization efficiency (absorption, assimilation and remobilization) to provide S to seeds. However, source-sink relationships and S management in developing seeds under sulfate restriction are poorly understood. To address this, impacts of sulfate restrictions applied at "visible bud" or "start of pod filling" stages were studied with two genotypes (Aviso, Capitol) showing similar seed yield but higher seed weight and lower number of seeds per plant for Capitol under non-limited conditions.

View Article and Find Full Text PDF

Regulating potato tuber dormancy is crucial for crop productivity and food security. We conducted the first comprehensive physiological, transcriptomic, and metabolomic investigations of two varieties of long and short dormant potato tubers in order to clarify the mechanisms of dormancy release. In the current study, three different dormant stages of UGT (ungerminated tubers), MGT (minimally germinated tubers), and GT (germinated tubers) were obtained by treatment with the germination promoter gibberellin A and the germination inhibitor chlorpropham.

View Article and Find Full Text PDF

DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.

View Article and Find Full Text PDF

Honey is a valuable natural product with antioxidant properties, and its quality is influenced by various factors, including botanical origin and biofortification. Pine bud extracts, known for their antioxidant capacity, were explored to enhance the properties of acacia and polyflower honey. This study aimed to investigate the effect of pine bud extracts at different maturation stages on the moisture content, dry matter, antioxidant activity, and total phenolic content (TPC) of acacia and polyflower honey.

View Article and Find Full Text PDF

Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals ( L. subsp. (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!