On the role of the connective tissue in the patterning of the chick limb musculature.

Wilehm Roux Arch Dev Biol

Equipe de recherche associée au CNRS no 621, Morphogenèse expérimentale, Laboratoire de Zoologie et Biologie animale, Université scientifique et médicale de Grenoble, F-38041, Grenoble, France.

Published: July 1982

By modifying the temporal relationship between connective tissue and myogenic cell invasion during early limb bud development new evidence of the organizing role of the connective tissue was obtained.Muscle cell-deprived wing buds were allowed to grow up to stages 22 to 27 of Hamburger and Hamilton, when they received a transplant of quail myogenic cells (somitic mesoderm or wing premuscular mass) into the dorsal face of their presumptive upper arm. Muscular arrangement in forearm and hand was analyzed 4 days later. In 8 out of 14 of those cases which had received a graft of premuscular mass before stage 25 of Hamburger and Hamilton, muscle development took place distally to the graft-site in accordance with the wing segment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00848416DOI Listing

Publication Analysis

Top Keywords

connective tissue
12
role connective
8
hamburger hamilton
8
premuscular mass
8
tissue patterning
4
patterning chick
4
chick limb
4
limb musculature
4
musculature modifying
4
modifying temporal
4

Similar Publications

Restoring bone healing potential.

Elife

January 2025

Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom.

A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.

View Article and Find Full Text PDF

Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity.

View Article and Find Full Text PDF

Atrophic acne scars present a significant therapeutic challenge. While subcision with various adjunctive treatments, including fractional CO₂ lasers and polydioxanone (PDO) threads, has been employed for scar remodeling, comparative evidence on their efficacy remains limited. This study aims to compare the clinical efficacy and patient satisfaction between subcision with fractional CO₂ laser and subcision with PDO screw threads in managing atrophic acne scars.

View Article and Find Full Text PDF

To investigate if progression of coronary artery calcification (CAC) in patients with systemic lupus erythematosus (SLE) is associated with renal and traditional cardiovascular risk factors as well as incidence of myocardial infarctions. CAC progression was evaluated by cardiac computed tomography (CT) at baseline and after 5 years. Multivariable Poisson regression was applied to investigate associations between CAC progression and baseline values for traditional cardiovascular risk factors, CAC, SLE disease duration, lupus nephritis, and renal function.

View Article and Find Full Text PDF

Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!