Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sepsis remains one of the leading causes of death in intensive care units. Although sepsis is caused by a viral, fungal or bacterial infection, it is the dysregulated generalized host response that ultimately leads to severe dysfunction of multiple organs and death. The concomitant profound metabolic changes are characterized by hyperglycemia, insulin resistance, and profound transformations of the intracellular energy supply in both peripheral and immune cells. A further hallmark of the early phases of sepsis is a massive formation of reactive oxygen (ROS; e.g., superoxide) as well as nitrogen (RNS; e.g., nitric oxide) species. Reactive carbonyl species (RCS) form a third crucial group of highly reactive metabolites, which until today have been not the focus of interest in sepsis. However, we previously showed in a prospective observational clinical trial that patients suffering from septic shock are characterized by significant methylglyoxal (MG)-derived carbonyl stress, with the glyoxalase system being downregulated in peripheral blood mononuclear cells. In this review, we give a detailed insight into the current state of research regarding the metabolic changes that entail an increased MG-production in septicemia. Thus, we point out the special role of the glyoxalase system in the context of sepsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372669 | PMC |
http://dx.doi.org/10.3390/ijms18030657 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!