https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=28304353&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 283043532018021620181113
1424-82201732017Mar17Sensors (Basel, Switzerland)Sensors (Basel)Phase Error Correction for Approximated Observation-Based Compressed Sensing Radar Imaging.61310.3390/s17030613Defocus of the reconstructed image of synthetic aperture radar (SAR) occurs in the presence of the phase error. In this work, a phase error correction method is proposed for compressed sensing (CS) radar imaging based on approximated observation. The proposed method has better image focusing ability with much less memory cost, compared to the conventional approaches, due to the inherent low memory requirement of the approximated observation operator. The one-dimensional (1D) phase error correction for approximated observation-based CS-SAR imaging is first carried out and it can be conveniently applied to the cases of random-frequency waveform and linear frequency modulated (LFM) waveform without any a priori knowledge. The approximated observation operators are obtained by calculating the inverse of Omega-K and chirp scaling algorithms for random-frequency and LFM waveforms, respectively. Furthermore, the 1D phase error model is modified by incorporating a priori knowledge and then a weighted 1D phase error model is proposed, which is capable of correcting two-dimensional (2D) phase error in some cases, where the estimation can be simplified to a 1D problem. Simulation and experimental results validate the effectiveness of the proposed method in the presence of 1D phase error or weighted 1D phase error.LiBoBDepartment of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China. libo702@mail.ustc.edu.cn.Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei 230027, China. libo702@mail.ustc.edu.cn.LiuFalinFDepartment of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China. liufl@ustc.edu.cn.Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei 230027, China. liufl@ustc.edu.cn.ZhouChongbinCDepartment of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China. zhouzcb@mail.ustc.edu.cn.Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei 230027, China. zhouzcb@mail.ustc.edu.cn.LvYuanhaoYDepartment of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China. yuanhaolv0203@163.com.Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei 230027, China. yuanhaolv0203@163.com.HuJingqiuJDepartment of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China. hujq@mail.ustc.edu.cn.Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei 230027, China. hujq@mail.ustc.edu.cn.engJournal Article20170317
SwitzerlandSensors (Basel)1012043661424-8220approximated observationcompressed sensingphase error correctionradar imagingThe authors declare no conflict of interest.
2016121820173142017315201731860201731860201731861201731epublish28304353PMC537589910.3390/s17030613s17030613Donoho D.L. Compressed sensing. IEEE Trans. Inf. Theory. 2006;52:1289–1306. doi: 10.1109/TIT.2006.871582.10.1109/TIT.2006.871582Candès E.J., Romberg J., Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory. 2006;52:489–509. doi: 10.1109/TIT.2005.862083.10.1109/TIT.2005.862083Chen Y.C., Li G., Zhang Q., Zhang Q.J., Xia X.G. Motion Compensation for Airborne SAR via Parametric Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2016;99:1–12. doi: 10.1109/LGRS.2016.2517095.10.1109/LGRS.2016.2517095Mao X., Zhu D. Two-dimensional Autofocus for Spotlight SAR Polar Format Imagery. IEEE Trans. Comput. Imaging. 2016;2:524–539. doi: 10.1109/TCI.2016.2612945.10.1109/TCI.2016.2612945Önhon N.Ö., Çetin M. A sparsity-driven approach for joint SAR imaging and phase error correction. IEEE Trans. Image Process. 2012;21:2075–2088. doi: 10.1109/TIP.2011.2179056.10.1109/TIP.2011.217905622167627Kelly S.I., Yaghoobi M., Davies M.E. Auto-Focus for Compressively Sampled SAR; Proceedings of the 1st International Workshop on Compressed Sensing Applied to Radar; Bonn, Germany. 14–16 May 2012.Wei S.J., Zhang X.L., Shi J. An autofocus approach for model error correction in compressed sensing SAR imaging; Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium; Munich, Germany. 22–27 July 2012; pp. 3987–3990.Yang J., Huang X., Thompson J., Jin T., Zhou Z. Compressed sensing radar imaging with compensation of observation position error. IEEE Trans. Geosci. Remote Sens. 2014;52:4608–4620. doi: 10.1109/TGRS.2013.2283054.10.1109/TGRS.2013.2283054Fang J., Xu Z., Zhang B., Hong W., Wu Y. Fast compressed sensing SAR imaging based on approximated observation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014;7:352–363. doi: 10.1109/JSTARS.2013.2263309.10.1109/JSTARS.2013.2263309Jiang C., Zhang B., Fang J., Zhe Z., Hong W., Wu Y., Xu Z. Efficient l q regularisation algorithm with range-azimuth decoupled for SAR imaging. Electron. Lett. 2014;50:204–205. doi: 10.1049/el.2013.1989.10.1049/el.2013.1989Yang J., Huang X., Jin T., Thompson J., Zhou Z. Synthetic aperture radar imaging using stepped frequency waveform. IEEE Trans. Geosci. Remote Sens. 2012;50:2026–2036. doi: 10.1109/TGRS.2011.2170176.10.1109/TGRS.2011.2170176Cumming I.G., Wong F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House; Norwood, MA, USA: 2005.Yang J., Thompson J., Huang X., Jin T., Zhou Z. Random-frequency SAR imaging based on compressed sensing. IEEE Trans. Geosci. Remote Sens. 2013;51:983–994. doi: 10.1109/TGRS.2012.2204891.10.1109/TGRS.2012.2204891Ding L., Chen W., Zhang W., Poor H.V. MIMO radar imaging with imperfect carrier synchronization: A point spread function analysis. IEEE Trans. Aerosp. Electron. Syst. 2015;51:2236–2247. doi: 10.1109/TAES.2015.140428.10.1109/TAES.2015.140428Ding L., Liu C., Wang T., Chen W. Sparse self-calibration via iterative minimization against phase synchronization mismatch for MIMO radar imaging; Proceedings of the 2013 IEEE Radar Conference (RadarCon13); Ottawa, ON, Canada. 29 April–3 May 2013; pp. 1–4.Li B., Liu F., Zhou C., Lv Y., Hu J. Fast compressed sensing SAR imaging using stepped frequency waveform; Proceedings of the 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT); Beijing, China. 5–8 June 2016; pp. 521–523.Hu J., Liu F., Zhou C., Li B., Wang D. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm. J. Radars. 2016 doi: 10.12000/JR16027.10.12000/JR16027Mairal J., Bach F., Ponce J., Sapiro G., Zisserman A. Non-local sparse models for image restoration; Proceedings of the 2009 IEEE 12th International Conference on Computer Vision; Kyoto, Japan. 27 September–4 October 2009; pp. 2272–2279.Raney R.K., Runge H., Bamler R., Cumming I.G., Wong F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994;32:786–799. doi: 10.1109/36.298008.10.1109/36.298008Blumensath T., Davies M.E. Iterative hard thresholding for compressed sensing. Appl. Comput. Harmonic Anal. 2009;27:265–274. doi: 10.1016/j.acha.2009.04.002.10.1016/j.acha.2009.04.002Boyd S., Vandenberghe L. Convex Optimization. Cambridge University Press; New York, NY, USA: 2004.Wang T., Lu X., Yu X., Xi Z., Chen W. A Fast and Accurate Sparse Continuous Signal Reconstruction by Homotopy DCD with Non-Convex Regularization. Sensors. 2014;14:5929–5951. doi: 10.3390/s140405929.10.3390/s140405929PMC402966224675758