People who engage in shift work (SW) have increased risk of developing illnesses, including infectious diseases and various inflammatory conditions. We hypothesized that exposure to repeated cycles of diurnal disruption, mimicking SW, influences viral clearance, latent viral load, or viral reactivation from latency in mice infected with murine gammaherpesvirus (MuGHV). To test this idea, we inoculated BALB/cByJ and C.129S7(B6)-Ifng tm1Ts/J (IFNgKO) mice with MuGHV and housed them under either a stable light:dark (LD) cycle or one mimicking SW. Compared with BALB/cByJ mice, IFNgKO mice generally had higher levels of lytic virus during the 6-wk period after inoculation. In addition, more IFNgKO mice were positive for replicating virus than were BALB/cByJ mice. Exposure to SW did not alter these measures consistently. After the virus had entered the latent phase of infection, mice received either LPS or pyrogen-free saline intraperitoneally. Mice exposed to SW and then injected with LPS during latent infection had greater viral loads and more replicating virus in the lung at 7 d after injection than did either mice that received pyrogen-free saline or those exposed to LD and then treated with LPS. Some cytokine and chemokine concentrations were changed in lung collected 1 d after but not at 7 d after LPS administration. These findings suggest that exposure to repeated chronic diurnal disruption and an acute inflammatory challenge during latent MuGHV infection, in the context of impaired host immune competence, contribute to enhanced viral reactivity and an increased viral load that might trigger 'sickness behavior' symptoms of infectious disease and perhaps contribute to chronic fatigue syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5157959PMC

Publication Analysis

Top Keywords

diurnal disruption
12
ifngko mice
12
mice
10
chronic diurnal
8
disruption acute
8
acute inflammatory
8
inflammatory challenge
8
murine gammaherpesvirus
8
exposure repeated
8
viral load
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!