Nanostructured Thermal Responsive Materials Synthesized by Soft Templating.

ACS Appl Mater Interfaces

Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI - EA 2528), I-Mat, Université de Cergy-Pontoise, 5 mail Gay-Lussac, 95031 Cergy-Pontoise, France.

Published: April 2017

We capitalized herein the inherent tortuosity of bicontinuous microemulsion to conceive nanostructured drug-delivery devices. First, we show that it is possible to synthesize bicontinuous materials with continuous hydrophilic domains of the poly(N-isopropylacrylamide) (PNIPAM) network entangled with continuous hydrophobic polymer domains, with dual-phase continuity being imposed by the bicontinuous microemulsions used as a soft template. Particular attention is paid to the microemulsion formulations using a surfmer to preserve the one-to-one replication of the bicontinuous nanostructure after polymerization. These materials keep a volume phase transition with temperature that allows considering them as drug carriers for controlled release. PNIPAM, which plays the role of the active ingredient reservoir, is confined in the bicontinuous structure. As expected, the PNIPAM enclosure limits the surface area in contact with the releasing aqueous solution and thus slows down the desorption of aspirin, which is used as a model drug. The hydrophobic polymers play the role of in situ-created transport barriers without hindering it as all the loaded aspirin in this bicontinuous structure still remains available.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b00028DOI Listing

Publication Analysis

Top Keywords

bicontinuous structure
8
bicontinuous
6
nanostructured thermal
4
thermal responsive
4
responsive materials
4
materials synthesized
4
synthesized soft
4
soft templating
4
templating capitalized
4
capitalized inherent
4

Similar Publications

Stabilizing bicontinuous particle-stabilized emulsions formed solvent transfer-induced phase separation.

Soft Matter

January 2025

Van 't Hoff Laboratory of Physical and Colloid Chemistry, Department of Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.

Bicontinuous particle-stabilized emulsions (bijels) are unique soft materials that combine the bulk properties of two immiscible fluids into a single interconnected structure. This structure is achieved through the formation of two interwoven fluid networks, stabilized by an interfacial layer of colloidal particles. Bijels with submicron-scale domain networks can be synthesized solvent transfer-induced phase separation (STrIPS).

View Article and Find Full Text PDF

Understanding the self-assembly and molecular structure of mRNA lipid nanoparticles at real size: Insights from the ultra-large-scale simulation.

Int J Pharm

December 2024

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; Faculty of Health Sciences, University of Macau, Macau 999078, China. Electronic address:

Messenger RNA (mRNA) encapsulated in lipid nanoparticles (LNPs) represents a cutting-edge delivery technology that played a pivotal role during the COVID-19 pandemic and in advancing vaccine development. However, molecular structure of mRNA-LNPs at real size remains poorly understood, with conflicting results from various experimental studies. In this study, we aim to explore the assembly process and structural characteristics of mRNA-LNPs at realistic sizes using coarse-grained molecular dynamic simulations.

View Article and Find Full Text PDF

Carbon-supported single-atom catalysts exhibit exceptional properties in acidic CO reduction. However, traditional carbon supports fall short in building high-site-utilization and CO-rich interfacial environments, and the structural evolution of single-atom metals and catalytic mechanisms under realistic conditions remain ambiguous. Herein, an interconnected mesoporous carbon nanofiber and carbon nanosheet network (IPCF@CS) is reported, derived from microphase-separated block copolymer, to improve catalytic efficiency of isolated Ni.

View Article and Find Full Text PDF

Tough Polyurethane Hydrogels with a Multiple Hydrogen-Bond Interlocked Bicontinuous Phase Structure Prepared by In Situ Water-Induced Microphase Separation.

Adv Mater

December 2024

Engineering Research Center of Energy Storage Materials and Devices Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.

Hydrogels with mechanical performances similar to load-bearing tissues are in demand for in vivo applications. In this work, inspired by the self-assembly behavior of amphiphilic polymers, polyurethane-based tough hydrogels with a multiple hydrogen-bond interlocked bicontinuous phase structure through in situ water-induced microphase separation strategy are developed, in which poly(ethylene glycol)-based polyurethane (PEG-PU, hydrophilic) and poly(ε-caprolactone)-based polyurethane (PCL-PU, hydrophobic) are blended to form dry films followed by water swelling. A multiple hydrogen bonding factor, imidazolidinyl urea, is introduced into the synthesis of the two polyurethanes, and the formation of multiple hydrogen bonds between PEG-PU and PCL-PU can promote homogeneous microphase separation for the construction of bicontinuous phase structures in the hydrogel network, by which the hydrogel features break strength of 12.

View Article and Find Full Text PDF

Bicontinuous Block Copolymer Microparticles through Hydrogen-Bonding-Mediated Dual Phase Separation between Polymer Segments and Fluorinated Additives.

ACS Nano

December 2024

Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.

Bicontinuous microparticles have advanced transport, mechanical, and electrochemical properties and show promising applications in energy storage, catalysis, and other fields. However, it remains a great challenge to fabricate bicontinuous microparticles of block copolymers (BCPs) by controlling the microphase separation due to the extremely narrow region of a bicontinuous structure in the phase diagram. Here, we demonstrate a strategy to balance the phase separation of BCPs and fluorinated additives at different length scales in emulsion droplets, providing a large window to access bicontinuous microparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!