Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments.

Environ Toxicol Chem

Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.

Published: October 2017

AI Article Synopsis

Article Abstract

Sediments are believed to be a major sink for silver nanoparticles (AgNPs) in the aquatic environment, but there is a lack of knowledge about the environmental effects and behavior of AgNPs in sediments. The release of highly toxic Ag through dissolution of AgNPs is one mechanism leading to toxic effects in sediments. We applied an ultrasound-assisted sequential extraction method to evaluate the dissolution of AgNPs and to study the partitioning of dissolved Ag in sediments. Silver was spiked into artificial and 2 natural sediments (Lake Höytiäinen sediment and Lake Kuorinka sediment) as silver nitrate (AgNO ), uncoated AgNPs, or polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs). In addition, the total body burdens of Ag in the sediment-dwelling oligochaete Lumbriculus variegatus were assessed over a 28-d exposure period. The dissolution rate was found to be similar between the uncoated AgNP and PVP-AgNP groups. In all sediments, dissolved Ag was mainly bound to the residual fraction of the sediment, followed by iron and manganese oxides or natural organic matter. In Lake Kuorinka sediment, dissolved Ag that originated from PVP-AgNPs was relatively more bioaccessible, also resulting in higher total body burden in L. variegatus than that from uncoated AgNPs or AgNO . In artificial sediment and Lake Höytiäinen sediment, AgNO was significantly more bioaccessible than AgNPs. Our results highlight the importance of sediment properties and AgNP surface chemistry when evaluating the environmental exposure of AgNPs. Environ Toxicol Chem 2017;36:2593-2601. © 2017 SETAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.3798DOI Listing

Publication Analysis

Top Keywords

agnps
9
dissolution agnps
8
lake höytiäinen
8
höytiäinen sediment
8
sediment lake
8
lake kuorinka
8
kuorinka sediment
8
uncoated agnps
8
total body
8
sediments
7

Similar Publications

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.

View Article and Find Full Text PDF

Modification of Ti13Nb13Zr Alloy Surface via Plasma Electrolytic Oxidation and Silver Nanoparticles Decorating.

Materials (Basel)

January 2025

Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.

The dynamically developing field of implantology requires researchers to search for new materials and solutions. In this study, TiNbZr samples were investigated as an alternative for popular, but potentially hazardous TiAl6V4. Samples were etched, sandblasted, subjected to PEO, and covered in AgNP suspension.

View Article and Find Full Text PDF

Easy One-Pot Decoration of Graphene Oxide Nanosheets by Green Silver Nanoparticles.

Int J Mol Sci

January 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

In this study, we developed a facile one-pot synthesis of a nanocomposite consisting of silver nanoparticles (AgNPs) growing over graphene oxide (GO) nanoflakes (AgNPs@GO). The process consists of the in situ formation of AgNPs in the presence of GO nanosheets via the spontaneous decomposition of silver(I) acetylacetonate (Ag(acac)) after dissolution in water. This protocol is compared to an ex situ approach where AgNPs are added to a waterborne GO nanosheet suspension to account for any attractive interaction between preformed nanomaterials.

View Article and Find Full Text PDF

This study evaluates the performance of continuous flow and drop-based microfluidic devices for the synthesis of silver nanoparticles (AgNPs) under identical hydrodynamic and chemical conditions. Flows at low values of Dean number (De < 1) were investigated, where the contribution of the vortices forming inside the drop to the additional mixing inside the reactor should be most noticeable. In the drop-based microfluidic device, discrete aqueous drops serving as reactors were generated by flow focusing using silicone oil as the continuous phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!