Neutron imaging and scattering give data of significantly different nature and traditional methods leave a gap of accessible structure sizes at around 10 micrometers. Only in recent years overlap in the probed size ranges could be achieved by independent application of high resolution scattering and imaging methods, however without providing full structural information when microstructures vary on a macroscopic scale. In this study we show how quantitative neutron dark-field imaging with a novel experimental approach provides both sub-pixel resolution with respect to microscopic correlation lengths and imaging of macroscopic variations of the microstructure. Thus it provides combined information on multiple length scales. A dispersion of micrometer sized polystyrene colloids was chosen as a model system to study gravity induced crystallisation of microspheres on a macro scale, including the identification of ordered as well as unordered phases. Our results pave the way to study heterogeneous systems locally in a previously impossible manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355987PMC
http://dx.doi.org/10.1038/srep44588DOI Listing

Publication Analysis

Top Keywords

neutron imaging
8
macroscopic scale
8
imaging
5
sub-pixel correlation
4
correlation length
4
length neutron
4
imaging spatially
4
spatially resolved
4
resolved scattering
4
scattering microstructures
4

Similar Publications

The distribution of substitutional aluminum (Al) atoms in zeolites affects molecular adsorbate geometry, catalytic activity, and shape and size selectivity. Accurately determining Al positions has been challenging. We used synchrotron resonant soft x-ray diffraction (RSXRD) at multiple energies near the Al K-edge combined with molecular adsorption techniques to precisely locate "single Al" and "Al pairs" in a commercial H-ZSM-5 zeolite.

View Article and Find Full Text PDF

Observation of magnetic skyrmion lattice in CrMnGe by small-angle neutron scattering.

Sci Rep

January 2025

Helmholtz-Zentrum Berlin für Materialien und Energie, 13109, Berlin, Germany.

Incommensurate magnetic phases in chiral cubic crystals are an established source of topological spin textures such as skyrmion and hedgehog lattices, with potential applications in spintronics and information storage. We report a comprehensive small-angle neutron scattering (SANS) study on the B20-type chiral magnet Cr[Formula: see text]Mn[Formula: see text]Ge, exploring its magnetic phase diagram and confirming the stabilization of a skyrmion lattice under low magnetic fields. Our results reveal a helical ground state with a decreasing pitch from 40 to 35 nm upon cooling, and a skyrmion phase stable in applied magnetic fields of 10-30 mT, and over an unusually wide temperature range for chiral magnets of 6 K ([Formula: see text], [Formula: see text] K).

View Article and Find Full Text PDF

This study shows an implementation of neutron-gamma pulse shape discrimination (PSD) using a two-dimensional convolutional neural network. The inputs to the network are snapshots of the unprocessed, digitized signals from a BC501A detector. By exposing a BC501A detector to a Cf-252 source, neutron and gamma signals were collected to create a training dataset.

View Article and Find Full Text PDF

Hypothesis: The oil phase controls the persistence length and aqueous channel diameter of reverse wormlike micelles (RWLMs), specifically by tuning the cohesive energy density of alkanes.

Experiments: We explore the influence of alkanes with varying chain lengths on the rheological properties, structural parameters, and morphology of RWLMs. To establish a link between the solvent characteristics and the structure of RWLMs, we employ a diverse set of complementary techniques, including rheological analysis, small-angle X-ray scattering (SAXS), Fourier-transform infrared (FT-IR) spectroscopy, and cryogenic transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Revisiting the neuroanatomy of Massetognathus pascuali (Eucynodontia: Cynognathia) from the early Late Triassic of South America using Neutron Tomography.

Naturwissenschaften

January 2025

Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900, Santa Maria, RS, Brazil.

This paper analyzes the paleoneurology (cranial endocast and maxillary canal) of Massetognathus pascuali, an iconic non-mammaliaform cynodont from the early Late Triassic of South America, using Neutron Tomography. The application of neutron tomography holds the potential for uncovering more refined anatomical and quantitative data. The newly examined cranial endocast shows a forebrain with a tubular shape without an interhemispheric fissure, presence of a pineal body (with a closed parietal foramen), and a marked unossified zone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!