Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anthropogenic activities have increased the concentration of metal species in the environment. The toxicity of silver ions to aquatic and terrestrial organisms has required monitoring by analytical methods, besides actions to promote its control as pollutant. Sorption and desorption processes are directly related to the mobility and availability of metal ions in the environment. In this context, clay minerals can be used for pre-concentration, removal and recovery of silver ions from aqueous solution. Herein, two bentonite clays (BaVC-1 and SWy-2) were characterised and applied to investigate the sorption and desorption of silver ions. Isotherms were fitted to the dual-mode Langmuir-Freundlich model to qualify and quantify sorption sites and evaluate the mobilisation process. The maximum sorption capacity was 743 and 849 meq kg for BaVC-1 and SWy-2, respectively. Hysteresis index (HI) and mobilisation factor (MF) suggest that the desorption of silver ions in BaVC-1 is about four times more conducive compared to that in SWy-2, although both materials have demonstrated a great potential for Ag pre-concentration from aqueous solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-8394-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!