The long-term substitution of fossil resources can only be achieved through a bio-based economy, with biorefineries and bio-based products playing a major role. However, it is important to assess the implications of the transition to a bio-based economy. Life cycle-based sustainability assessment is probably the most suitable approach to quantify impacts and to identify trade-offs at multiple levels. The extended utilisation of biomass can cause land use change and affect food security of the most vulnerable people throughout the world. Although this is mainly a political issue and governments should be responsible, the responsibility is shifted to companies producing biofuels and other bio-based products. Organic wastes and lignocellulosic biomass are considered to be the preferred feedstock for the production of bio-based products. However, it is unlikely that a bio-based economy can rely only on organic wastes and lignocellulosic biomass.It is crucial to identify potential problems related to socio-economic and environmental issues. Currently there are many approaches to the sustainability of bio-based products, both quantitative and qualitative. However, results of different calculation methods are not necessarily comparable and can cause confusion among decision-makers, stakeholders and the public.Hence, a harmonised, globally agreed approach would be the best solution to secure sustainable biomass/biofuels/bio-based chemicals production and trade, and to avoid indirect effects (e.g. indirect land use change). However, there is still a long way to go.Generally, the selection of suitable indicators that serve the purpose of sustainability assessment is very context-specific. Therefore, it is recommended to use a flexible and modular approach that can be adapted to various purposes. A conceptual model for the selection of sustainability indicators is provided that facilitates identifying suitable sustainability indicators based on relevance and significance in a given context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/10_2016_71 | DOI Listing |
Biopolymers
March 2025
Centro de Investigación en Química Aplicada, Saltillo, Coahuila, Mexico.
Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain. Electronic address:
The present work introduces and validates an artificial cell free system for the synthesis of acetoin from ethanol, representing a greener alternative to conventional chemical synthesis. The one pot multi-enzymatic system, which employs pyruvate decarboxylase from Zymobacter palmae (ZpPDC), alcohol dehydrogenase from Saccharomyces cerevisiae (ScADH), and NADH oxidase from Streptococcus pyogenes (SpNOX), achieves nearly 100 % substrate conversion and reaction yield within 6 h under optimal conditions (pH 7.5, enzyme activities: ZpPDC 100 U·mL, ScADH 50 U·mL, SpNOX 127 U·mL, and 1 mM NAD).
View Article and Find Full Text PDFChempluschem
January 2025
Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India.
The agricultural sector of any country plays a pivotal role in its economy. Irrigation and the provision of appropriate nutrient levels in soil are essential for optimizing plant growth and enhancing crop productivity. To support the increasing need for food due to the growing population worldwide, synthetic fertilizers have been widely used in the agricultural sector.
View Article and Find Full Text PDFPlant Physiol
January 2025
Rothamsted Research, West Common, Harpenden, Al5 2JQ, UK.
The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.
View Article and Find Full Text PDFSmall Methods
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.
Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!