Lingual CD36 and nutritional status differentially regulate fat preference in obesity-prone and obesity-resistant rats.

Physiol Behav

Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States; Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States. Electronic address:

Published: May 2017

Lingual fatty acid receptors (i.e. CD36) mediate the orosensory perception of fat/fatty acids and may contribute to the susceptibility to develop obesity. The current study tested the hypothesis that fat/fatty acid preference in obesity-prone (OP, Osborne-Mendel) and obesity-resistant (OR, S5B/Pl) rats is mediated by nutritional status and lingual CD36. To determine if nutritional status affected linoleic acid (LA) preference in OP and OR rats, rats were either fasted overnight or fed a high fat diet (60% kcal from fat). In OR rats, fasting increased the preference for higher concentrations of LA (1.0%), while consumption of a high fat diet decreased LA preference. In OP rats, fasting increased the preference for lower concentrations of LA (0.25%), however high fat diet consumption did not alter LA preference. To determine if lingual CD36 mediated the effects of an overnight fast on LA preference, the expression of lingual CD36 mRNA was assessed and the effect of lingual application of CD36 siRNA on LA preference was determined. Fasting increased lingual CD36 mRNA expression in OR rats, but failed to alter lingual CD36 mRNA in OP rats. Following an overnight fast, application of lingual CD36 siRNA led to a decrease in LA preference in OR, but not OP rats. Lingual application of CD36 siRNA was also used to determine if lingual CD36 mediated the intake and preference for a high fat diet in OP and OR rats. CD36 siRNA decreased the preference and intake of high fat diet in OR rats, but not OP rats. The results from this study suggest that the dysregulation of lingual CD36 in OP rats is a potential factor leading to increased fat intake and fat preference and an enhanced susceptibility to develop obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448558PMC
http://dx.doi.org/10.1016/j.physbeh.2017.03.015DOI Listing

Publication Analysis

Top Keywords

lingual cd36
36
high fat
20
fat diet
20
cd36 sirna
16
preference
13
rats
13
lingual
12
nutritional status
12
cd36
12
preference rats
12

Similar Publications

Adiponectin Signaling Modulates Fat Taste Responsiveness in Mice.

Nutrients

October 2024

Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.

Background/objectives: Adiponectin, the most abundant peptide hormone secreted by adipocytes, is a well-known homeostatic factor regulating lipid metabolism and insulin sensitivity. It has been shown that the adiponectin receptor agonist AdipoRon selectively enhances cellular responses to fatty acids in human taste cells, and adiponectin selectively increases taste behavioral responses to intralipid in mice. However, the molecular mechanism underlying the physiological effects of adiponectin on fat taste in mice remains unclear.

View Article and Find Full Text PDF

FAHFA promotes intracellular calcium signaling via activating the fat taste receptor, CD36 and Src protein kinases in mice taste bud cells.

Biochim Biophys Acta Gen Subj

December 2024

Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India. Electronic address:

Two lipid sensors, CD36 and GPR120, are crucial for the orosensory detection of fat taste and for mediating fat preference. However, the mechanism by which endogenous lipid (FAHFA) binds to CD36 to initiate intracellular signaling remains unexplained. Hence, the primary objective of this study is to investigate the binding mechanism of FAHFA to CD36 and its role in isolated mouse taste bud cells (mTBCs).

View Article and Find Full Text PDF

[Genetic variants in CD36: emerging role in oral fat perception and food preferences].

Nutr Hosp

December 2023

Instituto de Investigaciones en Comportamiento Alimentario y Nutrición. Universidad de Guadalajara.

CD36 is a receptor involved in physiologic, metabolic and pathologic processes. Due to its affinity for long-chain fatty acids, it has been postulated as a taste receptor of fatty taste. In this review, the emerging genetic evidence linking CD36 to oral fat perception is analyzed.

View Article and Find Full Text PDF

Adiponectin, a key metabolic hormone, is secreted into the circulation by fat cells where it enhances insulin sensitivity and stimulates glucose and fatty acid metabolism. Adiponectin receptors are highly expressed in the taste system; however, their effects and mechanisms of action in the modulation of gustatory function remain unclear. We utilized an immortalized human fungiform taste cell line (HuFF) to investigate the effect of AdipoRon, an adiponectin receptor agonist, on fatty acid-induced calcium responses.

View Article and Find Full Text PDF

Novel Fat Taste Receptor Agonists Curtail Progressive Weight Gain in Obese Male Mice.

Cell Mol Gastroenterol Hepatol

February 2023

NUTox, UMR UB/AgroSup/INSERM U1231, Lipides, Nutrition & Cancer, LABEX-LipStick, Université de Bourgogne-Franche Comté (UBFC), Dijon, France. Electronic address:

Background & Aims: The spontaneous preference for dietary lipids is principally regulated by 2 lingual fat taste receptors, CD36 and GPR120. Obese animals and most of human subjects exhibit low orosensory perception of dietary fat because of malfunctioning of these taste receptors. Our aim was to target the 2 fat taste receptors by newly synthesized high affinity fatty acid agonists to decrease fat-rich food intake and obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!