Mutations in PIK3R1 can lead to APDS2, SHORT syndrome or a combination of the two.

Clin Immunol

Department of Clinical Immunology, IdiPAZ, La Paz University Hospital, Madrid, Spain; Lymphocyte Pathophysiology Group, La Paz Institute of Biomedical Research, IdiPAZ, Madrid, Spain.

Published: June 2017

Mutations in PIK3R1 gene have been associated to two different conditions: a primary immunodeficiency, called APDS2, of recent description and SHORT syndrome. 47 patients with APDS2 have been reported to date, only one of them sharing both PIK3R1-related phenotypes. Here we describe two more patients affected by APDS2 and SHORT syndrome, which highlights that this association may not be so infrequent. We recommend that patients with mutations in PIK3R1 gene should be assessed by both clinical immunologists and clinical geneticists.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2017.03.004DOI Listing

Publication Analysis

Top Keywords

mutations pik3r1
12
short syndrome
12
apds2 short
8
pik3r1 gene
8
patients apds2
8
pik3r1 lead
4
apds2
4
lead apds2
4
syndrome combination
4
combination mutations
4

Similar Publications

Lymphoproliferation and hyper-IgM as the first manifestation of activated phosphoinositide 3-kinase δ syndrome: A case report.

Biomedica

December 2024

Universidad del Valle, Cali, ColombiaDepartamento de Microbiología, Facultad de Salud, Universidad del Valle, Cali, Colombia; Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disorders, National Institutes of Health, Bethesda, MD, USA.

Activated phosphoinositide 3-kinase δ syndrome is an inborn error of immunity due to mutations within the genes responsible for encoding PI3Kδ subunits. This syndrome results in an excessive activation of the phosphoinositide 3-kinase signaling pathway. Gainof-function mutations in the gene PIK3R1 (encoding p85α, p55α, and p50α) lead to the development of the activated PI3K δ syndrome.

View Article and Find Full Text PDF

encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction.

View Article and Find Full Text PDF

Determining whether an ipsilateral breast carcinoma recurrence is a true recurrence or a new primary remains challenging based solely on clinicopathologic features. Algorithms based on these features have estimated that up to 68% of recurrences might be new primaries. However, few studies have analyzed the clonal relationship between primary and secondary carcinomas to establish the true nature of recurrences.

View Article and Find Full Text PDF

Objective: To explore the clinical and genetic characteristics of two children diagnosed with two rare genetic diseases simultaneously.

Methods: Two children with comorbidity of two genetic diseases due to dual genetic mutations diagnosed at the Third Affiliated Hospital of Zhengzhou University respectively in May 2022 and March 2023 were selected as the study subjects. Clinical and genetic data of the two children were retrospectively analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!