Anti-Tumorigenic Effects of Resveratrol in Lung Cancer Cells Through Modulation of c-FLIP.

Curr Cancer Drug Targets

Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668. United States.

Published: May 2018

Background: Resveratrol has been shown to have antioxidant and anti-proliferative properties in multiple cancer types. Here we demonstrate that H460 lung cancer cells are more susceptible to resveratrol treatment in comparison to human bronchial epithelial Beas-2B cells. Resveratrol decreases cell viability and proliferation, and induces significant apoptosis in H460 cells. The apoptosis observed was accompanied by an increase in hydrogen peroxide (H2O2) production, Bid, PARP and caspase 8 activation, and downregulation of pEGFR, pAkt, c-FLIP and NFkB protein expression. Furthermore, treatment with HH2O2 scavenger catalase significantly inhibited resveratrol-induced c-FLIP downregulation, caspase-8 activation and apoptosis. Overexpression of c-FLIP in H460 cells (FLIP cells) resulted in the inhibition of resveratrol-induced HH2O2 production, and a significant increase in resveratrolinduced apoptosis in comparison to H460 cells. In FLIP cells, catalase treatment did not rescue cells from a decrease in cell viability and apoptosis induction by resveratrol as compared to H460 cells. Resveratrol treatment also led to VEGF downregulation in FLIP cells. Furthermore, inhibition of pEGFR or pAkt using erlotinib and LY294002 respectively, enhanced the negative effect of resveratrol on FLIP cell viability and apoptosis. The reverse was observed when FLIP cells were supplemented with EGF, or transfected with WT-AKT plasmid; resulting in a 20% decrease in resveratrol-induced apoptosis. In addition, transfection with WT-AKT plasmid resulted in the inhibition of pro-apoptotic protein activation, and c-FLIP and pAkt downregulation.

Conclusion: Overall, resveratrol induced apoptosis in H460 lung cancer cells by specifically targeting pAkt and c-FLIP dowregulation by proteasomal degradation in a EGFR-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476192PMC
http://dx.doi.org/10.2174/1568009617666170315162932DOI Listing

Publication Analysis

Top Keywords

h460 cells
16
flip cells
16
cells
13
lung cancer
12
cancer cells
12
cell viability
12
resveratrol
8
h460 lung
8
resveratrol treatment
8
cells resveratrol
8

Similar Publications

Objective: Epithelial-mesenchymal transition (EMT) and metastasis are the primary causes of mortality in non-small-cell lung cancer (NSCLC). 5'-3' exoribonuclease 2 (XRN2) plays an important role in the process of tumor EMT. Thus, this investigation mainly aimed to clarify the precise molecular pathways through which XRN2 contributes to EMT and metastasis in NSCLC.

View Article and Find Full Text PDF

Lung cancer continues to be the second most common cancer diagnosed and the main cause of cancer-related death globally, which requires novel and effective treatment strategies. When considering treatment options, non-small cell lung cancer (NSCLC) remained a challenge, seeking new therapeutic strategies High-power microwave (HPM) progressions have facilitated the advancement of new technologies as well as improvements to those already in use. The impact of HPM on NSCLC has not been investigated before.

View Article and Find Full Text PDF

Isoquinolinequinone N-oxides with diverging mechanisms of action induce collateral sensitivity against multidrug resistant cancer cells.

Eur J Pharmacol

December 2024

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal; FFUP - Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal. Electronic address:

Multidrug resistance (MDR) is a major challenge in cancer research. Collateral sensitizers, compounds that exploit the enhanced defense mechanisms of MDR cells as weaknesses, are a proposed strategy to overcome MDR. Our previous work reported the synthesis of two novel Isoquinolinequinone (IQQ) N-oxides that induce collateral sensitivity in MDR ABCB1-overexpressing non-small cell lung cancer (NSCLC) and colorectal cancer cells.

View Article and Find Full Text PDF

Decoding the prognostic landscape of LUAD: the interplay between N-methyladenosine modification and immune microenvironment.

Front Immunol

December 2024

State Key Laboratory of Trauma and Chemical Poisoning, Department of Stem Cell and Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China.

Background: To determine the role of N-methyladenosine (mA) modification in the tumor immune microenvironment (TIME), as well as their association with lung adenocarcinoma (LUAD).

Methods: Consensus clustering was performed to identify the subgroups with distinct immune or mA modification patterns using profiles from TCGA. A risk score model was constructed using least absolute shrinkage and selection operator regression and validated in two independent cohorts and LUAD tissue microarrays.

View Article and Find Full Text PDF

Objectives: Immune checkpoint inhibitors (ICIs) have demonstrated potential in inhibiting the growth of malignant pleural mesothelioma (MPM), and their efficacy is associated with the expression of programmed death-ligand 1(PD-L1). This study evaluated a PD-L1-targeted nanoprobe for detecting PD-L1 expression in a nude mouse model of malignant pleural mesothelioma (MPM).

Methods: A PD-L1-binding peptide (WL-12) was conjugated with superparamagnetic iron oxide nanoparticles (SPIONs) to create the nanoprobe WL-12@Fe₃O₄.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!