In vitro enzymatic assays have shown that an enzyme with typical xanthine dehydrogenase (XDH) activities and electrophoretic mobility slightly different from that of Drosophila XDH is present in Calliphora tissues. A Calliphora genomic sequence has been isolated by low-stringency hybridization to the Drosophila rosy gene (XDH), and partially sequenced. This sequence has been shown to be unique, polymorphic, and it maps on chromosome I. Sequence comparisons provide compelling evidence that it belongs to the XDH gene of Calliphora. Interspecies transformation experiments, aimed at investigating functional as well as structural divergence of the XDH genes of Calliphora and Drosophila, are now possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0378-1119(87)90328-3 | DOI Listing |
Thorax
January 2025
Genome Medicine Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
Objective: Reduced functional capacity and muscle weakness are two major contributors to functional impairment in chronic obstructive pulmonary disease (COPD). The underlying causes of functional impairment are poorly understood and, therefore, we sought to investigate the contribution of genetic factors.
Methods: We conducted a cross-sectional analysis of sociodemographic, clinical and genetic information of people with COPD.
Biochim Biophys Acta Mol Cell Res
January 2025
School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada. Electronic address:
Hydrogen sulfide (HS) is an important gasotransmitter that regulates a wide range of pathophysiological processes. Higher uric acid levels are associated with an increased risk of metabolic diseases. The causal mechanism linking HS signalling and uric acid metabolism in skeletal muscles has not yet been elucidated.
View Article and Find Full Text PDFLife Metab
October 2024
CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China.
Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.
In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
January 2025
Center for Animal Nutrition and Welfare, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
Background: The objective was to characterize the colostrum proteome of primiparous Holstein cows in association with immunoglobulin G (IgG) content. Immediately after calving, colostrum samples were collected from 18 cows to measure IgG concentration. Based on colostrum IgG content, samples were classified through cluster analysis and were identified as poor, average, and excellent quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!