SVIP regulates Z variant alpha-1 antitrypsin retro-translocation by inhibiting ubiquitin ligase gp78.

PLoS One

Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States.

Published: September 2017

Alpha-1 antitrypsin deficiency (AATD) is an inherited disorder characterized by early-onset emphysema and liver disease. The most common disease-causing mutation is a single amino acid substitution (Glu/Lys) at amino acid 342 of the mature protein, resulting in disruption of the 290-342 salt bridge (an electrophoretic abnormality defining the mutation [Z allele, or ZAAT]), protein misfolding, polymerization, and accumulation in the endoplasmic reticulum of hepatocytes and monocytes. The Z allele causes a toxic gain of function, and the E3 ubiquitin ligase gp78 promotes degradation and increased solubility of endogenous ZAAT. We hypothesized that the accumulation of ZAAT is influenced by modulation of gp78 E3 ligase and SVIP (small VCP-interacting protein) interaction with p97/VCP in ZAAT-expressing hepatocytes. We showed that the SVIP inhibitory effect on ERAD due to overexpression causes the accumulation of ZAAT in a human Z hepatocyte-like cell line (AT01). Overexpression of gp78, as well as SVIP suppression, induces gp78-VCP/p97 interaction in AT01 cells. This interaction leads to retro-translocation of ZAAT and reduction of the SVIP inhibitory role in ERAD. In this context, overexpression of gp78 or SVIP suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354272PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172983PLOS

Publication Analysis

Top Keywords

alpha-1 antitrypsin
8
ubiquitin ligase
8
ligase gp78
8
amino acid
8
toxic gain
8
gain function
8
accumulation zaat
8
svip inhibitory
8
overexpression gp78
8
svip suppression
8

Similar Publications

Rationale: Individuals homozygous for the Alpha-1 Antitrypsin (AAT) Z allele (Pi*ZZ) exhibit heterogeneity in COPD risk. COPD occurrence in non-smokers with AAT deficiency (AATD) suggests inflammatory processes may contribute to COPD risk independently of smoking. We hypothesized that inflammatory protein biomarkers in non-AATD COPD are associated with moderate-to-severe COPD in AATD individuals, after accounting for clinical factors.

View Article and Find Full Text PDF

Endosomal toll-like receptors (TLRs) TLR7, TLR8, and TLR9 play an important role in systemic lupus erythematosus (SLE) pathogenesis. The proteolytic processing of these receptors in the endolysosome is required for signaling in response to DNA and single-stranded RNA, respectively. Targeting this proteolytic processing may represent a novel strategy to inhibit TLR-mediated pathogenesis.

View Article and Find Full Text PDF

Alpha-1 Antitrypsin as a Regulatory Protease Inhibitor Modulating Inflammation and Shaping the Tumor Microenvironment in Cancer.

Cells

January 2025

Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.

Alpha-1 antitrypsin (AAT) is a key serine protease inhibitor for regulating proteases such as neutrophil elastase. AAT restrains the pulmonary matrix from enzymatic degradation, and a deficiency in AAT leads to inflammatory tissue damage in the lungs, resulting in chronic obstructive pulmonary disease. Due to the crucial biological function of AAT, the emerging research interest in this protein has shifted to its role in cancer-associated inflammation and the dynamics of the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!