A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of breast cancer risk based on flow-variant analysis of circulating peripheral blood B cells. | LitMetric

Purpose: Identifying women at high risk for breast cancer can trigger a personal program of annual mammograms and magnetic resonance imaging scans for early detection, prophylactic surgery, or chemoprevention to reduce the risk of cancer. Yet, current strategies to identify high-risk mutations based on sequencing panels of genes have significant false-positive and false-negative results, suggesting the need for alternative approaches.

Methods: Flow-variant assays (FVAs) that assess the effects of mutations in the double-strand break (DSB) repair genetic pathway in lymphoblastoid cells in response to treatment with radiomimetic agents were assessed for sensitivity, specificity, and accuracy both alone and as part of a logistic regression classification score. In turn, these assays were validated in circulating B cells and applied to individuals with personal and/or family history of breast and/or ovarian cancer.

Results: A three-FVA classification score based on logistic regression had 95% accuracy. Individuals from a breast cancer-positive cohort with affected family members had high-risk FVA classification scores.

Conclusion: Application of a classification score based on multiple FVAs could represent an alternative to panel sequencing for identifying women at high risk for cancer.Genet Med advance online publication 16 March 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1038/gim.2016.222DOI Listing

Publication Analysis

Top Keywords

classification score
12
breast cancer
8
identifying women
8
women high
8
high risk
8
logistic regression
8
score based
8
prediction breast
4
risk
4
cancer risk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!