The pyrene-based RNA-fluorescence label 2-(2-pyrenylethynyl) adenosine (2PyA) shows triexponential fluorescence, which depends strongly on the excitation wavelength. Most strikingly, a structured, long-lived fluorescence is observed in solution at room temperature after excitation into the S state, which is shifted hypsochromically by 30 nm compared to excitation into the S state. This very unusual behavior is investigated in detail with steady-state and time-resolved emission spectroscopy, ultrafast transient absorption spectroscopy, and quantum chemical calculations with both wave functions (CC2-level) and density-functional theory (DFT). 2PyA is found to emit simultaneously from two different intramolecular charge transfer states (mesomeric and twisted, MICT and TICT) which are populated most efficiently via the S state and a pyrene-like locally excited (LE) state. Rotational momentum derived from excess excitation energy is required to populate twisted LE configurations. Therefore, the LE state is most efficiently accessible via excitation to the S. The stabilization of the different substates is related to two distinct reaction coordinates: the adenine-pyrene distance and the adenine-pyrene tilt angle, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.7b02027 | DOI Listing |
Chem Sci
December 2024
Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
Phosphorescent gold(iii) complexes possess long-lived emissive excited states, making them ideal for use as molecular sensors and photosensitizers for organic transformations. Literature reports indicate that gold(iii) emitters exhibit good catalytic activity in homogeneous photochemical reactions. Heterogeneous metal-organic framework (MOF)-supported gold(iii) photocatalysts are considered to show high recyclability in photochemical reactions and potentially provide new selectivities.
View Article and Find Full Text PDFCommun Phys
January 2025
Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä, Finland.
Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States.
Lanthanide materials with a 4f electron configuration (S) offer an exciting system for realizing multiple addressable spin states for qubit design. While the S ground state of 4f free ions displays an isotropic character, breaking degeneracy of this ground state and excited states can be achieved through local symmetry of the lanthanide and the choice of ligands. This makes Eu attractive as it mirrors Gd in exhibiting the S ground state, capable of seven spin-allowed transitions.
View Article and Find Full Text PDFDalton Trans
January 2025
Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands.
View Article and Find Full Text PDFNano Lett
January 2025
Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.
Nonvolatile control of spin order or spin excitations offers a promising avenue for advancing spintronics; however, practical implementation remains challenging. In this Letter, we propose a general framework to realize electrical control of magnons in 2D magnetic insulators. We demonstrate that in bilayer ferromagnetic insulators with strong spin-layer coupling, the electric field can effectively manipulate the spin exchange interactions between the layers, enabling nonvolatile control of the corresponding magnons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!