Hybrid perovskites have created enormous research interest as a low-cost material for high-performance photovoltaic devices, light-emitting diodes, photodetectors, memory devices and sensors. Perovskite materials in nanocrystal form that display intense luminescence due to the quantum confinement effect were found to be particularly suitable for most of these applications. However, the potential use of perovskite nanocrystals as a light-harvesting antenna for possible applications in artificial photosynthesis systems is not yet explored. In the present work, we study the light-harvesting antenna properties of luminescent methylammonium lead bromide (CH NH PbBr )-based perovskite nanocrystals using fluorescent dyes (rhodamine B, rhodamine 101, and nile red) as energy acceptors. Our studies revealed that CH NH PbBr nanocrystals are an excellent light-harvesting antenna, and efficient fluorescence resonance energy transfer occurs from the nanocrystals to fluorescent dyes. Further, the energy transfer efficiency is found to be highly dependent on the number of anchoring groups and binding ability of the dyes to the surface of the nanocrystals. These observations may have significant implications for perovskite-based light-harvesting devices and their possible use in artificial photosynthesis systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201601672DOI Listing

Publication Analysis

Top Keywords

light-harvesting antenna
16
perovskite nanocrystals
12
energy transfer
12
fluorescence resonance
8
resonance energy
8
artificial photosynthesis
8
photosynthesis systems
8
nanocrystals fluorescent
8
fluorescent dyes
8
nanocrystals
6

Similar Publications

Key Chlorophyll Molecules in the Uphill Energy Transfer from Chlorophyll to P700 in Far-Red Light-Adapted Photosystem I.

J Phys Chem B

January 2025

Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

Multiple far-red light-adapted photosystem I (FR-PSI) reaction centers are recently found to work in oxygenic photosynthesis. They contain a small amount of a new type pigment chlorophyll (Chl ) in addition to the major pigment chlorophyll (Chl ). FR-PSI differs from the conventional PSIs in plants and cyanobacteria, which use only visible light absorbed by Chl , although the mechanism of FR-PSI is not fully clear yet.

View Article and Find Full Text PDF

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

Iron (Fe) availability limits photosynthesis at a global scale where Fe-rich photosystem (PS) I abundance is drastically reduced in Fe-poor environments. We used single-particle cryo-electron microscopy to reveal a unique Fe starvation-dependent arrangement of light-harvesting chlorophyll (LHC) proteins where Fe starvation-induced TIDI1 is found in an additional tetramer of LHC proteins associated with PSI in and . These cosmopolitan green algae are resilient to poor Fe nutrition.

View Article and Find Full Text PDF

Purple phototrophic bacteria produce two kinds of light-harvesting complexes that function to capture and transmit solar energy: the core antenna (LH1) and the peripheral antenna (LH2). The apoproteins of these antennas, encoded respectively by the genes pufBA and pucBA within and outside the photosynthetic gene cluster, respectively, exhibit conserved amino acid sequences and structural topologies suggesting they were derived from a shared ancestor. Here we present the structures of two photosynthetic complexes from Roseospirillum (Rss.

View Article and Find Full Text PDF

Light-harvesting complexes (LHCs) play a critical role in modulating energy flux within photosynthetic organisms in response to fluctuating light. Under high light conditions, they activate quenching mechanisms to mitigate photodamage. Despite their importance, the molecular mechanisms underlying these photoprotective processes remain incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!