Inflammatory responses involving microglia and astrocytes contribute to the pathogenesis of neurodegenerative diseases (NDs). In addition, inflammation is tightly linked to iron metabolism dysregulation. However, it is not clear whether the brain inflammation-induced iron metabolism dysregulation contributes to the NDs pathogenesis. Herein, we demonstrate that the expression of the systemic iron regulatory hormone, hepcidin, is induced by lipopolysaccharide (LPS) through the IL-6/STAT3 pathway in the cortex and hippocampus. In this paradigm, activated glial cells are the source of IL-6, which was essential in the iron overload-activated apoptosis of neurons. Disrupting astrocyte hepcidin expression prevented the apoptosis of neurons, which were able to maintain levels of FPN1 adequate to avoid iron accumulation. Together, our data are consistent with a model whereby inflammation initiates an intercellular signaling cascade in which activated microglia, through IL-6 signaling, stimulate astrocytes to release hepcidin which, in turn, signals to neurons, via hepcidin, to prevent their iron release. Such a pathway is relevant to NDs in that it links inflammation, microglia and astrocytes to neuronal damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386583 | PMC |
http://dx.doi.org/10.1038/cddis.2017.93 | DOI Listing |
Cell Death Dis
August 2024
Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
Subarachnoid hemorrhage (SAH) significantly compromises the blood-brain barrier (BBB) and impairs patient recovery. This study elucidates the critical role of astrocytic Neogenin-1 (NEO1) in BBB integrity post-SAH and examines the regulatory effects of hepcidin on endothelial cell (EC) function amid NEO1-mediated disruptions in iron homeostasis. Proteomic analyses of cerebrospinal fluid (CSF) from SAH patients revealed a substantial decrease in NEO1 expression, identifying it as a key factor in BBB integrity.
View Article and Find Full Text PDFFree Radic Biol Med
January 2024
Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China. Electronic address:
Iron accumulation is one of the most essential pathological events after subarachnoid hemorrhage (SAH). Ferroportin1 (FPN1) is the only transmembrane protein responsible for exporting iron. Hepcidin, as the major regulator of FPN1, is responsible for its degradation.
View Article and Find Full Text PDFExp Mol Med
November 2023
Department of Anatomy, Inha University School of Medicine, Incheon, 22212, Korea.
Dysregulation of brain iron levels causes functional disturbances and damages neurons. Hepcidin (a peptide hormone) plays a principal role in regulating intracellular iron levels by modulating ferroportin (FPN, the only known iron exporter) through triggering its internalization and lysosomal degradation. We observed a significant and rapid iron surge in the cortices of ischemic hemispheres at 3 h after cerebral ischemia (middle cerebral artery occlusion, MCAO) that was maintained until 4 d post-MCAO.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2024
Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China. Electronic address:
Ethnopharmacological Relevance: The Banxia-Houpu decoction (BHD), a renowned prescription documented in the Chinese medical book "The Synopsis of the Golden Chamber," has been proven to effectively mitigate inflammation within the central nervous system. Previous studies have demonstrated the efficacy of BHD in ameliorating symptoms in patients with obstructive sleep apnea (OSA). Nevertheless, the precise mechanisms and comprehensive effects of BHD on central system injury in OSA models have not been fully investigated.
View Article and Find Full Text PDFJ Neurochem
March 2023
Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!