The infrared spectral characteristics of three different types of disaccharides (trehalose, maltose, and sucrose) and four different types of monosaccharides (glucose, mannose, galactose, and fructose) in aqueous solutions with sodium chloride (NaCl) were determined. The infrared spectra were obtained using the FT-IR/ATR method and the absorption intensities respected the interaction between the saccharide and water with NaCl were determined. This study also focused on not only the glycosidic linkage position and the constituent monosaccharides, but also the concentration of the saccharides and NaCl and found that they have a significant influence on the infrared spectroscopic characterization of the disaccharides in an aqueous solution with NaCl. The absorption intensities representing the interaction between a saccharide and water with NaCl were spectroscopically determined. Additionally, the applications of MIR spectroscopy to obtain information about saccharide-NaCl interactions in foods and biosystems were suggested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09168451.2016.1277943 | DOI Listing |
Langmuir
January 2025
Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Tokyo, Hachioji 192-0015, Japan.
The two-dimensional interlayer space of layered materials has been highlighted due to their adsorption property, whose nanostructure in the water-immersed state is scarcely understood by experiment. Recent developments in molecular simulation have enabled researchers to investigate the interlayer structure, but water content is necessary for accurate modeling. In the present study, we proposed a theoretical method to estimate the saturated water content and adsorption selectivity of trichlorophenol and phenol in montmorillonite modified with hexadecyltrimethylammonium ions.
View Article and Find Full Text PDFRSC Adv
January 2025
Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium
Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.
View Article and Find Full Text PDFInorg Chem
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
Revealing the design and synthesis of precisely tailored crystalline catalysts for achieving efficient photocatalytic conversion of styrene into high-value-added products remains a challenging task. In this work, a highly stable crystalline polyoxovanadate functionalized by the dl-tartaric acid ligand H[VO(HO)(tart)]·HO [, tart = CHO] was successfully synthesized by conventional aqueous solution methods. The photocatalytic performance was evaluated for the photosynthesis of styrene oxide by employing an oxygen source as the oxidant in the visible light (>420 nm) conditions at room temperature with compound as a heterogeneous catalyst.
View Article and Find Full Text PDFSci Rep
January 2025
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
This study illuminates the mineral carbonation potential of zeolite minerals. Zeolite minerals are common alteration products of basaltic rocks and are known for their ability to rapidly exchange their interstitial cations with those in aqueous solutions. A series of closed system batch reactor experiments was conducted at 60 °C by combining stilbite, a Ca-bearing zeolite, with 0.
View Article and Find Full Text PDFACS Nano
January 2025
BK21 Program, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea.
The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!