Single-Ion Deconvolution of Mass Peak Overlaps for Atom Probe Microscopy.

Microsc Microanal

Department of Materials Science, University of Oxford,16 Parks Rd,Oxford OX1 3PH,UK.

Published: April 2017

Due to the intrinsic evaporation properties of the material studied, insufficient mass-resolving power and lack of knowledge of the kinetic energy of incident ions, peaks in the atom probe mass-to-charge spectrum can overlap and result in incorrect composition measurements. Contributions to these peak overlaps can be deconvoluted globally, by simply examining adjacent peaks combined with knowledge of natural isotopic abundances. However, this strategy does not account for the fact that the relative contributions to this convoluted signal can often vary significantly in different regions of the analysis volume; e.g., across interfaces and within clusters. Some progress has been made with spatially localized deconvolution in cases where the discrete microstructural regions can be easily identified within the reconstruction, but this means no further point cloud analyses are possible. Hence, we present an ion-by-ion methodology where the identity of each ion, normally obscured by peak overlap, is resolved by examining the isotopic abundance of their immediate surroundings. The resulting peak-deconvoluted data are a point cloud and can be analyzed with any existing tools. We present two detailed case studies and discussion of the limitations of this new technique.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927616012782DOI Listing

Publication Analysis

Top Keywords

peak overlaps
8
atom probe
8
point cloud
8
single-ion deconvolution
4
deconvolution mass
4
mass peak
4
overlaps atom
4
probe microscopy
4
microscopy intrinsic
4
intrinsic evaporation
4

Similar Publications

has long been recognized as an important spider mite pest of rubber trees. Recently, increasing damage from has elevated its importance as a key spider mite pest. These two species share highly overlapping ecological niches, with outbreaks strongly associated with high temperatures and drought stresses.

View Article and Find Full Text PDF

Objective: To investigate the prognostic value of baseline European Association of Nuclear Medicine Research Ltd. (EARL) standardized [F]fluorodeoxyglucose positron emission tomography-computed tomography ([F]FDG PET-CT) quantitative values for survival and to evaluate cutoff values identified in other studies.

Materials And Methods: Pediatric and adolescent patients with high-grade osteosarcoma were included.

View Article and Find Full Text PDF

Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.

View Article and Find Full Text PDF

Animals employ various strategies to minimize the overlap of their vocalizations with other sounds, thereby enhancing the effectiveness of their communication. However, little attention has been given to experimentally examining how the structure of the acoustic signal changes in response to various kinds of disturbances in the soundscape. In this study, I experimentally investigated whether male thrush nightingales (Luscinia luscinia) adjust their singing rate, song frequency, and song type in response to different types of artificial sounds.

View Article and Find Full Text PDF

Background: The demand for sustainable energy solutions has increased interest in natural microalgal dyes as photosensitizers in dye-sensitized solar cells (DSSCs). This study addresses the critical issue of maximizing dye integrity and yield during extraction, particularly the degradation that occurs at temperatures above 60 °C. Our investigation of dye extraction from Asterarcys quadricellulare and Scenedesmus sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!