In Vivo Fate of Carbon Nanotubes with Different Physicochemical Properties for Gene Delivery Applications.

ACS Appl Mater Interfaces

Grup d' Enginyeria de Materials (GEMAT), Institut Quı́mic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08022, Spain.

Published: April 2017

Gene therapy has arisen as a pioneering technique to treat diseases by direct employment of nucleic acids as medicine. The major historical problem is to develop efficient and safe systems for the delivery of therapeutic genes into the target cells. Carbon nanotubes (CNTs) have demonstrated considerable promise as delivery vectors due to their (i) high aspect ratio and (ii) capacity to translocate through plasma membranes, known as the nanoneedle effect. To leverage these advantages, close attention needs to be paid to the physicochemical characteristics of the CNTs used. CNTs with different diameters (thinner and thicker) were treated by chemical oxidation to produce shorter fragments. Rigid (thick) and flexible (thin) CNTs, and their shortened versions, were coated with polyallylamine (ppAA) by plasma-enhanced chemical vapor deposition. The ppAA coating leads to a positively charged CNT surface that is able to electrostatically bind the green fluorescent protein plasmid reporter. This study shows how rigidity and length can affect their (i) behavior in biological media, (ii) ability to transfect in vitro, and (iii) biodistribution in vivo. This study also generates a set of basic design rules for the development of more efficient CNT-based gene-delivery vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b00677DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
vivo fate
4
fate carbon
4
nanotubes physicochemical
4
physicochemical properties
4
properties gene
4
gene delivery
4
delivery applications
4
applications gene
4
gene therapy
4

Similar Publications

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions.

View Article and Find Full Text PDF

In this research, poly(lactic acid) (PLA) nanocomposites with multi-walled carbon nanotubes (MWCNT) were produced by extrusion, injection, and compression molding, focusing on electromagnetic shielding. Various amounts of carbon nanotubes (MWCNTs) were tested in PLA matrix, specifically ranging from 1 to 4 parts per hundred resin (phr). The resulting nanocomposites were analyzed before and after undergoing annealing heat treatment.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!