Electrochemical Quartz Crystal Nanobalance (EQCN) Based Biosensor for Sensitive Detection of Antibiotic Residues in Milk.

Methods Mol Biol

Biosensor Lab, Department of Chemistry, BITS, Pilani-K.K., Birla Goa Campus, Goa, 403726, India.

Published: February 2018

An electrochemical quartz crystal nanobalance (EQCN), which provides real-time analysis of dynamic surface events, is a valuable tool for analyzing biomolecular interactions. EQCN biosensors are based on mass-sensitive measurements that can detect small mass changes caused by chemical binding to small piezoelectric crystals. Among the various biosensors, the piezoelectric biosensor is considered one of the most sensitive analytical techniques, capable of detecting antigens at picogram levels. EQCN is an effective monitoring technique for regulation of the antibiotics below the maximum residual limit (MRL). The analysis of antibiotic residues requires high sensitivity, rapidity, reliability and cost effectiveness. For analytical purposes the general approach is to take advantage of the piezoelectric effect by immobilizing a biosensing layer on top of the piezoelectric crystal. The sensing layer usually comprises a biological material such as an antibody, enzymes, or aptamers having high specificity and selectivity for the target molecule to be detected. The biosensing layer is usually functionalized using surface chemistry modifications. When these bio-functionalized quartz crystals are exposed to a particular substance of interest (e.g., a substrate, inhibitor, antigen or protein), binding interaction occurs. This causes a frequency or mass change that can be used to determine the amount of material interacted or bound. EQCN biosensors can easily be automated by using a flow injection analysis (FIA) setup coupled through automated pumps and injection valves. Such FIA-EQCN biosensors have great potential for the detection of different analytes such as antibiotic residues in various matrices such as water, waste water, and milk.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-6911-1_18DOI Listing

Publication Analysis

Top Keywords

antibiotic residues
12
electrochemical quartz
8
quartz crystal
8
crystal nanobalance
8
nanobalance eqcn
8
eqcn biosensors
8
biosensing layer
8
eqcn
5
eqcn based
4
based biosensor
4

Similar Publications

Mimicking the reactivity of drug metabolites: Biomolecule conjugation of an electrochemically-generated, reactive oxidation product of the antibiotic minocycline.

J Pharm Biomed Anal

January 2025

Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany. Electronic address:

Minocycline is an antibiotic of the tetracycline family which is widely used to treat a range of medical conditions. Although it has been in use for more than 50 years, little information is available on its metabolism in the human body. In this study, we simulate the biotransformation of minocycline by means of electrochemistry coupled to mass spectrometry.

View Article and Find Full Text PDF

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.

View Article and Find Full Text PDF

The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.

View Article and Find Full Text PDF

A cross-sectional study on 156 smallholder dairy farms in Rwanda was carried out to assess the association between farm management practices and milk yield and quality. A pre-tested questionnaire was used to collect data on cow characteristics and farm management practices. Milk yield was recorded at household level, milk composition was monitored using a Lactoscan device (Milk Analyzer).

View Article and Find Full Text PDF

Potential of lavender essential oil to inhibit tetracycline resistance and modulate gut microbiota in black soldier fly larvae.

J Hazard Mater

January 2025

Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China. Electronic address:

The misuse of tetracycline in livestock farming leads to environmental residues that promote the proliferation of antibiotic resistance genes (ARGs), particularly tetracycline resistance (tet) genes. Black soldier fly (BSF) larvae, used for organic waste bioconversion, may carry tetracycline residues in their guts, raising concerns about ARG spread. To address this issue, plant-derived additives such as lavender essential oil (LEO) have been explored as alternative antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!