A Genetic Screen Reveals Novel Targets to Render Sensitive to Lysozyme and Cell Wall-Targeting Antibiotics.

Front Cell Infect Microbiol

Department of Microbiology and Immunology, Yonsei University College of MedicineSeoul, South Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of MedicineSeoul, South Korea; Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of MedicineSeoul, South Korea.

Published: September 2017

is capable of establishing airway infections. Human airway mucus contains a large amount of lysozyme, which hydrolyzes bacterial cell walls. , however, is known to be resistant to lysozyme. Here, we performed a genetic screen using a mutant library of PAO1, a prototype strain, and identified two mutants (Δ and Δ) that exhibited decrease in survival after lysozyme treatment. The and genes encode an outer membrane assembly protein and a fatty acid synthesis enzyme, respectively. These two mutants displayed retarded growth in the airway mucus secretion (AMS). In addition, these mutants exhibited reduced virulence and compromised survival fitness in two different infection models. The mutants also showed susceptibility to several antibiotics. Especially, Δ mutant was very sensitive to vancomycin, ampicillin, and ceftazidime that target cell wall synthesis. The Δ displayed compromised membrane integrity. In conclusion, this study uncovered a common aspect of two different mutants with pleiotropic phenotypes, and suggests that BamB and FabY could be novel potential drug targets for the treatment of infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331053PMC
http://dx.doi.org/10.3389/fcimb.2017.00059DOI Listing

Publication Analysis

Top Keywords

genetic screen
8
airway mucus
8
mutants exhibited
8
mutants
5
screen reveals
4
reveals novel
4
novel targets
4
targets render
4
render sensitive
4
lysozyme
4

Similar Publications

Evaluating the impact of modeling choices on the performance of integrated genetic and clinical models.

Genet Med

December 2024

Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN. Electronic address:

Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.

View Article and Find Full Text PDF

Exploring key embryonic developmental morphokinetic parameters that affect clinical outcomes during the PGT cycle using time-lapse monitoring systems.

BMC Pregnancy Childbirth

December 2024

Reproductive Medical Center, Henan Province Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, China.

Research Question: Is it possible to predict blastocyst quality, embryo chromosomal ploidy, and clinical pregnancy outcome after single embryo transfer from embryo developmental morphokinetic parameters?

Design: The morphokinetic parameters of 1011 blastocysts from 227 patients undergoing preimplantation genetic testing were examined. Correlations between the morphokinetic parameters and the quality of blastocysts, chromosomal ploidy, and clinical pregnancy outcomes following the transfer of single blastocysts were retrospectively analyzed.

Results: The morphokinetic parameters of embryos in the high-quality blastocyst group were significantly shorter than those in the low-quality blastocyst group (p < 0.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa is a major cause of healthcare-associated infections (HAIs), particularly in immunocompromised patients, leading to high morbidity and mortality rates. This study aimed to investigate the antimicrobial resistance patterns, virulence gene profiles, and genetic diversity among P. aeruginosa isolates from hospitalized patients in Mazandaran, Iran.

View Article and Find Full Text PDF

Clinical Spectrum and Prognosis of Atypical Autosomal Dominant Polycystic Kidney Disease Caused by Monoallelic Pathogenic Variants of IFT140.

Am J Kidney Dis

December 2024

Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre de référence MARHEA, CHRU Brest, Brest, France; Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium. Electronic address:

Rationale & Objective: Monoallelic predicted Loss-of-Function (pLoF) variants in IFT140 have recently been associated with an autosomal dominant polycystic kidney disease (ADPKD)-like phenotype. This study sought to enhance the characterization of this phenotype.

Study Design: Case series.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!