A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Activation of human neutrophil gelatinase by endogenous serine proteinases. | LitMetric

The role of serine proteinases and oxidants in the activation of gelatinase released from human neutrophils was investigated. Gelatinase was measured by its ability to degrade both gelatin and native glomerular basement-membrane type IV collagen. When fMet-Leu-Phe or phorbol 12-myristate 13-acetate was used to stimulate the neutrophils, no gelatinase activity was measured in the absence of a mercurial activator, indicating that the enzyme was released entirely in latent form. However, when fMet-Leu-Phe-stimulated cells were treated with cytochalasin B, 50-70% of the maximal gelatinase activity was released. Activation was blocked by the serine-proteinase inhibitor phenylmethanesulphonyl fluoride and a specific inhibitor of neutrophil elastase, but was not affected by an inhibitor of cathepsin G. Addition of catalase or azide to prevent oxidative reactions did not affect activation of gelatinase under any conditions of stimulation, indicating that oxidants were not involved in activation. Our results imply that oxidative activation of gelatinase does not occur readily. However, neutrophil serine proteinases, particularly elastase, provide an alternative and apparently more efficient mechanism of activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1148706PMC
http://dx.doi.org/10.1042/bj2490327DOI Listing

Publication Analysis

Top Keywords

serine proteinases
12
activation gelatinase
12
gelatinase activity
8
activation
7
gelatinase
7
activation human
4
human neutrophil
4
neutrophil gelatinase
4
gelatinase endogenous
4
endogenous serine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!