Fibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an established regulator of ECM remodeling via transcriptional control of ECM proteins. Here we show that TGF-β, through increased FN trafficking in a transcription- and SMAD-independent manner, is a direct and rapid inducer of the fibrillogenesis required for TGF-β-induced cell migration. Whereas TGF-β signaling is dispensable for rapid fibrillogenesis, stable interactions between the cytoplasmic domain of the type II TGF-β receptor (TβRII) and the FN receptor (α5β1 integrin) are required. We find that, in response to TGF-β, cell surface-internalized FN is not degraded by the lysosome but instead undergoes recycling and incorporation into fibrils, a process dependent on TβRII. These findings are the first to show direct use of trafficked and recycled FN for fibrillogenesis, with a striking role for TGF-β in this process. Given the significant physiological consequences associated with FN availability and polymerization, our findings provide new insights into the regulation of fibrillogenesis for cellular homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415016PMC
http://dx.doi.org/10.1091/mbc.E16-08-0601DOI Listing

Publication Analysis

Top Keywords

rapid fibrillogenesis
8
ecm remodeling
8
cell migration
8
tgf-β
7
fibrillogenesis
7
tgf-β triggers
4
triggers rapid
4
fibrillogenesis novel
4
novel tβrii-dependent
4
tβrii-dependent fibronectin-trafficking
4

Similar Publications

In this study, we investigated gene expression in vitro of human primary Aortic smooth muscle cells (AoSMCs) in response to 9% physiological dynamic stretch over a 4 to 72-h timeframe using RT-qPCR. AoSMC were derived from primary culture and were exposed to continuous cycles of stretch and relaxation at 1 Hz by a computer-controlled Flex Jr.™ Tension System.

View Article and Find Full Text PDF

Calcium phosphate nanoclusters modify periodontium remodeling and minimize orthodontic relapse.

Biomaterials

April 2025

Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, United States; School of Engineering, Brown University, Providence, RI, United States. Electronic address:

Orthodontic relapse is one of the most prevalent concerns of orthodontic therapy. Relapse results in patients' teeth reverting towards their pretreatment positions, which increases the susceptibility to functional problems, dental disease, and substantially increases the financial burden for retreatment. This phenomenon is thought to be induced by rapid remodeling of the periodontal ligament (PDL) in the early stages and poor bone quality in the later stages.

View Article and Find Full Text PDF
Article Synopsis
  • There is a significant increase in the mechanical properties and load-bearing capabilities of tendons during embryonic development, but the exact structural elements contributing to this growth are not fully understood.
  • Researchers used various methods, including shear lag modeling and mechanical testing, to analyze the changes in tendon structure and function in embryonic chick development, revealing that increases in fibril length and crosslinking are key to enhanced mechanics.
  • Inhibiting collagen crosslinking and inducing muscle paralysis demonstrated that both crosslink formation and fibril elongation are essential for developing strong load-bearing tendons and are sensitive to mechanical stimulation.
View Article and Find Full Text PDF

Calcium phosphate nanoclusters modify periodontium remodeling and minimize orthodontic relapse.

bioRxiv

July 2024

Graduate Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, United States.

Orthodontic relapse is one of the most prevalent concerns of orthodontic therapy. Relapse results in patients' teeth reverting towards their pretreatment positions, which increases the susceptibility to functional problems, dental disease, and substantially increases the financial burden for retreatment. This phenomenon is thought to be induced by rapid remodeling of the periodontal ligament (PDL) in the early stages and poor bone quality in the later stages.

View Article and Find Full Text PDF

Liver click dECM hydrogels for engineering hepatic microenvironments.

Acta Biomater

September 2024

Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Centre for Microbiome Research, Queensland University of Technology, Brisbane, Australia. Electronic address:

Decellularized extracellular matrix (dECM) hydrogels provide tissue-specific microenvironments which accommodate physiological cellular phenotypes in 3D in vitro cell cultures. However, their formation hinges on collagen fibrillogenesis, a complex process which limits regulation of physicochemical properties. Hence, achieving reproducible results with dECM hydrogels poses as a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!