A preventive HIV-1 vaccine should induce HIV-1-specific broadly neutralizing antibodies (bnAbs). However, bnAbs generally require high levels of somatic hypermutation (SHM) to acquire breadth, and current vaccine strategies have not been successful in inducing bnAbs. Because bnAbs directed against a glycosylated site adjacent to the third variable loop (V3) of the HIV-1 envelope protein require limited SHM, the V3-glycan epitope is an attractive vaccine target. By studying the cooperation among multiple V3-glycan B cell lineages and their coevolution with autologous virus throughout 5 years of infection, we identify key events in the ontogeny of a V3-glycan bnAb. Two autologous neutralizing antibody lineages selected for virus escape mutations and consequently allowed initiation and affinity maturation of a V3-glycan bnAb lineage. The nucleotide substitution required to initiate the bnAb lineage occurred at a low-probability site for activation-induced cytidine deaminase activity. Cooperation of B cell lineages and an improbable mutation critical for bnAb activity defined the necessary events leading to breadth in this V3-glycan bnAb lineage. These findings may, in part, explain why initiation of V3-glycan bnAbs is rare, and suggest an immunization strategy for inducing similar V3-glycan bnAbs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562350PMC
http://dx.doi.org/10.1126/scitranslmed.aai7514DOI Listing

Publication Analysis

Top Keywords

v3-glycan bnab
12
bnab lineage
12
broadly neutralizing
8
neutralizing antibodies
8
bnabs bnabs
8
cell lineages
8
v3-glycan bnabs
8
v3-glycan
7
bnabs
6
bnab
5

Similar Publications

Elicitation of HIV broadly neutralizing antibodies (bnAbs) by vaccination first requires the activation of diverse precursors, followed by successive boosts that guide these responses to enhanced breadth through the acquisition of somatic mutations. Because HIV bnAbs contain mutations in their B cell receptors (BCRs) that are rarely generated during conventional B cell maturation, HIV vaccine immunogens must robustly engage and expand B cells with BCRs that contain these improbable mutations. Here, we engineered an immunogen that activates diverse precursors of an HIV V3-glycan bnAb and promotes their acquisition of a functionally critical improbable mutation.

View Article and Find Full Text PDF

Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses.

View Article and Find Full Text PDF

Mutation-guided vaccine design: A process for developing boosting immunogens for HIV broadly neutralizing antibody induction.

Cell Host Microbe

May 2024

Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Integrative Immunology, Duke University School of Medicine, Durham, NC 27710, USA. Electronic address:

Article Synopsis
  • Scientists are trying to create a vaccine for HIV-1 that makes special antibodies called broadly neutralizing antibodies (bnAbs) that can fight the virus.*
  • They found a way to design important boosters that help these antibodies develop stronger and better by using unique methods with special mice.*
  • Their research shows that both protein and mRNA boosters can successfully help create these powerful antibodies, which is an important step toward making an effective HIV-1 vaccine.*
View Article and Find Full Text PDF
Article Synopsis
  • HIV-1 shows decreasing susceptibility to neutralizing antibodies over time, particularly in virulent B (VB) variants.
  • Our research highlights the genetic changes in VB HIV-1 that facilitate immune escape from broadly neutralizing antibodies, specifically noting the absence of critical glycans N295 and N332.
  • The presence of a V2 insertion in all VB variants also contributes to immune evasion, suggesting a co-evolution of HIV-1 virulence and its ability to dodge immune responses, emphasizing the importance of tracking new strains.
View Article and Find Full Text PDF

Modeling resistance to the broadly neutralizing antibody PGT121 in people living with HIV-1.

PLoS Comput Biol

March 2024

Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.

PGT121 is a broadly neutralizing antibody in clinical development for the treatment and prevention of HIV-1 infection via passive administration. PGT121 targets the HIV-1 V3-glycan and demonstrated potent antiviral activity in a phase I clinical trial. Resistance to PGT121 monotherapy rapidly occurred in the majority of participants in this trial with the sampled rebound viruses being entirely resistant to PGT121 mediated neutralization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!