Encapsulation is an established technique to protect sensitive materials from environmental stress. In order to understand the physical protection mechanism against oxidation, knowledge about the powder microstructure is required. Time domain-nuclear magnetic resonance (TD-NMR) has the potential to determine the surface oil (SO) and droplet size distribution by relaxation and restricted self-diffusion, respectively. The amount of SO, the retention and encapsulation efficiency are determined based on a lipid balance. The oil load of the initial powder and after SO removal is measured by TD-NMR. The results correlate with gravimetric and photometric references. The oil droplet size obtained by TD-NMR correlates well with static light scattering. The diameter of droplets in emulsions and dried powder both measured by TD-NMR, correlates (r = 0.998), implying that oil droplets embedded in a solid matrix can be measured. Summarising, TD-NMR allows analysis of the microstructure of encapsulated lipid powders, in a rapid, simple and non-destructive way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02652048.2017.1300198 | DOI Listing |
Int J Nanomedicine
January 2025
Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia.
Introduction: Wound treatment is a significant health burden in any healthcare system, which requires proper management to minimize pain and prevent bacterial infections that can complicate the wound healing process.
Rationale: There is a need to develop innovative therapies to accelerate wound healing cost-effectively. Herein, two polymer-based nanofibrous systems were developed using poly-lactic-co-glycolic-acid (PLGA) and polyvinylpyrrolidone (PVP) loaded with a combination of an antibiotic (Fusidic acid, FA) and a local anesthetic (Lidocaine, LDC) via electrospinning technique for an expedited healing process by preventing bacterial infections while reducing the pain sensation.
Food Chem X
January 2025
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods.
View Article and Find Full Text PDFMol Ther
January 2025
Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA. Electronic address:
Exemplified by successful use in COVID-19 vaccination, delivery of modified mRNA encapsulated in lipid nanoparticles provides a framework for treating various genetic and acquired disorders. However, lipid nanoparticles that can deliver mRNA into specific lung cell types have not yet been established. Here, we sought whether poly(®-amino ester)s (PBAE) or PEGylated PBAE (PBAE-PEG) in combination with 4A3-SC8/DOPE/cholesterol/DOTAP lipid nanoparticles (LNP) could deliver mRNA into different types of lung cells in vivo.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90%) of DPPC (Tm 41°C) and HSPC (Tm 54.
View Article and Find Full Text PDFJ Control Release
January 2025
Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan. Electronic address:
Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!