Colloid-polymer mixtures under slit confinement.

J Chem Phys

Área de Física de Procesos Irreversibles, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana, Ave. San Pablo 180 Col. Reynosa, Ciudad de México 02200, Mexico.

Published: March 2017

We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1⩾q⩾0.4 and the confinement distance, H, in 10σ⩾H⩾3σ, σ being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σ) for H≳4σ. The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σ), from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4977831DOI Listing

Publication Analysis

Top Keywords

colloid-polymer mixtures
8
mixtures slit
8
slit confinement
8
reservoir polymer
8
polymer concentrations
8
confinement report
4
report nvt
4
nvt molecular
4
molecular dynamic
4
dynamic study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!