Solvent-Slaved Dynamic Processes Observed by Tryptophan Phosphorescence of Human Serum Albumin.

Biophys J

Department of Food Science, Rutgers University, New Brunswick, New Jersey. Electronic address:

Published: March 2017

Despite extensive experimental and computational efforts to understand the nature of the hierarchy of protein fluctuations and the modulating role of the protein hydration shell, a detailed microscopic description of the dynamics of the protein-solvent system has yet to be achieved. By using single tryptophan protein phosphorescence, we follow site-specific internal protein dynamics over a broad temperature range and demonstrate three independent dynamic processes. Process I is seen at temperatures below the bulk solvent T, has low activation energy, and is likely due to fast vibrations that may be enabled by water mobility on the protein surface. Process II is observed above 170 K, with activation energy typical of β relaxations in a glass; it has the same temperature dependence as fluctuations of hydration shell waters. Process III is observed at T > 200 K; it has super-Arrhenius temperature dependence and closely follows the primary relaxation of the bulk. The fluorescence of pyranine bound to the protein reports on the mobility of water in the hydration shell; it reveals a shift in emission spectra with increasing temperature, indicative of a changing H-bond network at the surface of the protein. These results support a model of solvent-slaved protein dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355485PMC
http://dx.doi.org/10.1016/j.bpj.2016.12.048DOI Listing

Publication Analysis

Top Keywords

hydration shell
12
dynamic processes
8
protein
8
protein dynamics
8
activation energy
8
temperature dependence
8
solvent-slaved dynamic
4
processes observed
4
observed tryptophan
4
tryptophan phosphorescence
4

Similar Publications

Fap-targeting biomimetic nanosystem to restore the activated cancer-associated fibroblasts to quiescent state for breast cancer radiotherapy.

Int J Pharm

January 2025

Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China. Electronic address:

Cancer associated fibroblasts (CAFs) are one of the most important stromal cells in the tumor microenvironment, playing a pivotal role in the development, recurrence, metastasis, and immunosuppression of cancer and treatment resistance. Here, we developed a core-shell biomimetic nanosystem termed as FAP-C NPs. This system was comprised of 4 T1 extracellular vesicles fused with a FAP single-chain antibody fragment to form the biomimetic shell, and PLGA nanoparticles loaded with calcipotriol as the core.

View Article and Find Full Text PDF

Hydrate-based carbon capture and storage (HBCS) is a sustainable and promising approach to combating global warming by utilizing water, which is a ubiquitous resource. Here, we report a comprehensive study of CO hydrate formation in dry water (DW), a water-in-air dispersion confined in silica particles, for improving the kinetics of hydrate growth. Utilizing a combination of a home-built high-pressure reactor, in situ Raman spectroscopy, and powder X-ray diffraction (PXRD), we elucidate the crystal structure, growth dynamics, and morphology of CO hydrates formed in DW, with and without the kinetic hydrate promoter, l-tryptophan.

View Article and Find Full Text PDF

This study provides a comprehensive analysis of the interactions between dimethyl sulfoxide (DMSO) and two small peptides, diglycine and -acetyl-glycine-methylamide (NAGMA), in aqueous solutions using FTIR spectroscopy and density functional theory (DFT) calculations. ATR-FTIR spectroscopy and DFT results revealed that DMSO does not form direct bonds with the peptides, suggesting that DMSO indirectly influences both peptides by modifying the surrounding water molecules. The analysis of HDO spectra allowed for the isolation of the contribution of water molecules that were simultaneously altered by the peptide and DMSO, and it also explained the changes in the hydration shells of the peptides in the presence of DMSO.

View Article and Find Full Text PDF

The hydration shell of a protein is so important and an integral part of it, that protein's structure, stability and functionality cannot be conceived in its absence. This layer has unique properties not found in bulk water. However, ions, always present in the protein environment, disturb the hydration shell depending on their nature and concentration.

View Article and Find Full Text PDF
Article Synopsis
  • BOMD simulations were conducted to explore the structure and dynamics of hydration shells around five trivalent lanthanide ions at room temperature, revealing complexities in accurately classifying their molecular geometry.
  • A cluster microsolvation approach was used, involving interactions of Ln ions (La, Nd, Gd, Er, Lu) with up to 27 water molecules, validating the effectiveness of the rSCAN-3c method in predicting average Ln-O distances and coordination numbers.
  • The study found that the first hydration shells displayed significant dynamism with varying coordination geometries, highlighting the efficiency of microsolvation models in replicating the solvation structures of these rare-earth ions and improving understanding of water dynamics around them.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!