The present study investigated the potential of metabolic glycoengineering followed by bioorthogonal click chemistry for introducing into cell-surface glycans different immunomodulating molecules. Mouse tumor models EG7 and MC38-OVA were treated with Ac4GalNAz and Ac4ManNAz followed by ligation of immunostimulants to modified cell-surface glycans of the living cells through bioorthogonal click chemistry. The presence of covalently bound oligosaccharide and oligonucleotide immunostimulants could be clearly established. The activation of a reporter macrophage cell line was determined. Depending on the tumor cell line, covalently and noncovalently bound CpG activated the macrophages by between 67 and 100% over controls. EG7 cells with covalently attached immunostimulants and controls were injected subcutaneously into C57BL/6 mice. All tumor cells subjected to the complete treatment with control molecules formed tumors like nontreated cells confirming cell viability. However, when CpG oligonucleotide was linked to cell-surface glycans, tumor growth was slowed significantly (60% reduction, n = 10, by covalently bound CpG compared to noncovalently bound CpG, n = 10). When mice that had not developed large tumors were challenged with unmodified EG7 cells, no new tumors developed, suggesting protection through the immune system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.7b00042DOI Listing

Publication Analysis

Top Keywords

bioorthogonal click
12
click chemistry
12
cell-surface glycans
12
bound cpg
12
metabolic glycoengineering
8
glycoengineering bioorthogonal
8
covalently bound
8
noncovalently bound
8
eg7 cells
8
cells
6

Similar Publications

Inflammation is a dynamic process which importantly involves migration of immune cells. Understanding the onset, acute phase and resolution of inflammation is greatly facilitated by their imaging. However, immune cells are sensitive, difficult to genetically manipulate and prone to changes in response to contact, hindering the application of well-established cell labeling methods.

View Article and Find Full Text PDF
Article Synopsis
  • Positron Emission Tomography (PET) is a key imaging method in molecular medicine, enabling non-invasive visualization of biological processes at the molecular level.
  • Antibody-based PET imaging is becoming increasingly important for targeted disease detection and treatment.
  • The article discusses various antibody conjugation techniques, bioconjugation reactions, and new advancements in radiolabeling, aiming to enhance PET imaging for personalized medicine.
View Article and Find Full Text PDF

Nitrile-aminothiol bioorthogonal near-infrared fluorogenic probes for ultrasensitive in vivo imaging.

Nat Commun

January 2025

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.

Bioorthogonal chemistry-mediated self-assembly holds great promise for dynamic molecular imaging in living organisms. However, existing approaches are limited to nanoaggregates with 'always-on' signals, suffering from high signal-to-background ratio (SBR) and compromised detection sensitivity. Herein we report a nitrile-aminothiol (NAT) bioorthogonal fluorogenic probe (CyNA-SS-FK) for ultrasensitive diagnosis of orthotopic hepatocellular carcinoma.

View Article and Find Full Text PDF

Metal-mediated Protein Engineering within live Cells.

Chem Asian J

December 2024

Humboldt-Universitat zu Berlin, Chemistry, Brook-Taylor Str 2, 12489, Berlin, GERMANY.

Metal mediated several organic reactions are known which can be used inside the cellular medium for protein modifications, eventually for targeting diseases. Indeed, due to ease of handling-rapid solubility-fast cell penetration metals are superior than any other competitor as a stimulus/mediator in organic reactions relevant with protein modifications. Metal mediated most effective reactions as a chemical biology tool are Cu(I)-catalyzed azide-alkyne cycloaddition(CuAAC)/click reactions or Pd mediated multiple chemical reactions for intra/extra cellular protein modifications etc.

View Article and Find Full Text PDF

A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!