Ample evidence has suggested that extracellular α-synuclein aggregates would play key roles in the pathogenesis and progression of Parkinsonian disorders (PDs). In the present study, we investigated whether mesenchymal stem cells (MSCs) and their derived soluble factors could exert neuroprotective effects via proteolysis of extracellular α-synuclein. When preformed α-synuclein aggregates were incubated with MSC-conditioned medium, α-synuclein aggregates were disassembled, and insoluble and oligomeric forms of α-synuclein were markedly decreased, thus leading to a significant increase in neuronal viability. In an animal study, MSC or MSC-conditioned medium treatment decreased the expression of α-synuclein oligomers and the induction of pathogenic α-synuclein with an attenuation of apoptotic cell death signaling. Furthermore, we identified that matrix metalloproteinase-2 (MMP-2), a soluble factor derived from MSCs, played an important role in the degradation of extracellular α-synuclein. Our data demonstrated that MSCs and their derived MMP-2 exert neuroprotective properties through proteolysis of aggregated α-synuclein in PD-related microenvironments. Stem Cells Translational Medicine 2017;6:949-961.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442774PMC
http://dx.doi.org/10.5966/sctm.2016-0111DOI Listing

Publication Analysis

Top Keywords

extracellular α-synuclein
16
α-synuclein aggregates
16
α-synuclein
10
mesenchymal stem
8
matrix metalloproteinase-2
8
stem cells
8
mscs derived
8
exert neuroprotective
8
msc-conditioned medium
8
cleavage mesenchymal
4

Similar Publications

Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.

View Article and Find Full Text PDF

Long-term climate history can influence rates of soil carbon cycling but the microbial traits underlying these legacy effects are not well understood. Legacies may result if historical climate differences alter the traits of soil microbial communities, particularly those associated with carbon cycling and stress tolerance. However, it is also possible that contemporary conditions can overcome the influence of historical climate, particularly under extreme conditions.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Fluid Distribution: Response to Intermittent Pneumatic Compression in People With and Without Primary Lymphedema.

Lymphat Res Biol

January 2025

Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Bedford Park, Australia.

Current understanding of changes in fluid distribution in response to the application of compression in primary lymphedema (PLE) is limited. This study measured fluid distribution before and after one application of standardized intermittent pneumatic compression (IPC) in the lower limbs of people with PLE, compared with those without lymphedema. High-frequency ultrasound (HFU) was used to measure dermal fluid, bioimpedance to measure segmental fluid, and percent water content (PWC) to measure fluid at specific anatomical points.

View Article and Find Full Text PDF

Background: Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!