The bony pelvis of primates is a composite structure serving a variety of functions, and exhibiting a complex pattern of modularity and integration. Still little is known, however, about how patterns of modularity and integration arise, and how they change throughout ontogeny. Here we study the ontogeny of modularity and integration in developmental and functional units of the pelvis of our closest living relatives, the chimpanzees. We use methods of biomedical imaging and geometric morphometrics to quantify pelvic shape change from late fetal stages to adulthood, and to track changes in patterns of covariation within and among pelvic regions. Our results show that both developmental and functional units of the pelvis exhibit significant levels of modularity throughout ontogeny. Modularity of developmental units (ilium, ischium, and pubis) decreases with increasing age, whereas modularity of functional units tends to increase. We suggest that the decreasing modularity and increasing integration of developmental units reflects their gradual fusion. In contrast, increasing modularity of functional pelvic units likely reflects changing functional demands during an individual's lifetime. Overall, ontogenetic changes in patterns of modularity and integration imply that natural selection could act differently on each module, either developmental or functional, at different stages of ontogeny. This further implies that adult patterns of covariation in the pelvis provide only limited information about its evolvability. Anat Rec, 300:675-686, 2017. © 2017 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.23548 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!