Estradiol alters the immune-responsiveness of cervical epithelial cells stimulated with ligands of Toll-like receptors 2 and 4.

PLoS One

Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, University of Sheffield, Jessop Wing, Sheffield, United Kingdom.

Published: September 2017

The mucosa of the female reproductive tract plays a pivotal role in host defence. Pregnancy must alter immunological mechanisms at this interface to protect the conceptus. We sought to determine how estradiol (E2) alters the immune-responsiveness of cervical epithelial cells to ligand stimulation of Toll-like receptor (TLR)-2 and -4. Human ectocervical epithelial cells (HECECs) were cultured and co-incubated with two concentrations of E2 and peptidoglycan (PGN) or lipopolysaccharide (LPS) over durations that ranged between 10 minutes and 18 hours. Cytometric Bead Array was performed to quantify eight cytokines in the supernatant fluid. In response to PGN, HECECs co-incubated with E2 released lesser quantities of IL-1ß and IFNγ, higher levels of RANTES, and variable levels of IL-6 and IL-8 than those not exposed to E2. In contrast, HECECs co-incubated with LPS and E2 secreted increased levels of IL-1ß, IL-6, IL-8, and IFNγ at 2 and 18 hours than HECECs not exposed to E2, and reduced levels of RANTES at same study time-points. Estradiol alters the immune-responsiveness of cultured HECECs to TLR2 and TLR4 ligands in a complex fashion that appears to vary with bacterial ligand, TLR subtype, and duration of exposure. Our observations are consistent with the functional complexity that this mucosal interface requires for its immunological roles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5351915PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173646PLOS

Publication Analysis

Top Keywords

estradiol alters
12
alters immune-responsiveness
12
epithelial cells
12
immune-responsiveness cervical
8
cervical epithelial
8
hececs co-incubated
8
levels rantes
8
il-6 il-8
8
hececs
5
cells stimulated
4

Similar Publications

Unveiling FOXO3's metabolic contribution to menopause and Alzheimer's disease.

Exp Gerontol

January 2025

Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland. Electronic address:

The increasing prevalence of Alzheimer's disease (AD) calls for a comprehensive exploration of its complex etiology, with a focus on sex-specific vulnerability, particularly the heightened susceptibility observed in postmenopausal women. Neurometabolic alterations during the endocrine transition emerge as early indicators of AD pathology, including reduced glucose metabolism and increased amyloid-beta (Aβ) deposition. The fluctuating endocrine environment, marked by declining estradiol levels and reduced estrogen receptor beta (ERβ) activity, further exacerbates this process.

View Article and Find Full Text PDF

Spatial transcriptomics unveils estrogen-modulated immune responses and structural alterations in the ectocervical mucosa of depot medroxyprogesterone acetate users.

Sci Rep

January 2025

Department of Medicine Solna, Division of Infectious Diseases, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Bioclinicum J7:20, 171 76, Solna, Sweden.

The injectable contraceptive, depot medroxyprogesterone acetate (DMPA), is associated with compromised cervical mucosal barriers. High-resolution spatial transcriptomics is applied here to reveal the spatial localization of these altered molecular markers. Ectocervical tissue samples from Kenyan sex workers using DMPA, or non-hormonal contraceptives, underwent spatial transcriptomics and gene set enrichment analyses.

View Article and Find Full Text PDF

Bisphenol A alters JUN promoter methylation, impairing steroid metabolism in placental cells and linking to sub-representative phenotypes.

Gene

January 2025

School of Life Sciences, Fudan University, Shanghai 200433, China; MOE Engineering Research Center of Gene Technology, School of Life Sciences, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200433, China. Electronic address:

Bisphenol A (BPA) is a widely used industrial compound commonly found in various everyday plastic products. Known for its endocrine-disrupting properties, BPA can enter the human body through multiple pathways. Prenatal exposure to BPA not only disrupts placental structure and function but also interferes with normal steroid metabolism.

View Article and Find Full Text PDF

Introduction: Women with early bilateral salpingo-oophorectomy (BSO) have greater Alzheimer's disease (AD) risk than women with spontaneous menopause (SM), but the pathway toward this risk is understudied. Considering associative memory deficits may reflect early signs of AD, we studied how BSO affected brain activity underlying associative memory.

Methods: Early midlife women with BSO (with and without 17β-estradiol therapy [ET]) and age-matched controls (AMCs) with intact ovaries completed a face-name associative memory task during functional magnetic resonance imaging.

View Article and Find Full Text PDF

Exogenous estradiol impacts anxiety-like behavior of juvenile male and female Siberian hamsters in a dose-dependent manner.

Horm Behav

December 2024

Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY, USA; Evolution, Ecology, and Behavior Program, University at Buffalo, SUNY, NY, USA.

Anxiety is among the most prevalent mental health issues in children. While it is well established that gonadal steroids influence anxiety-like behavior in adulthood, a potential role in prepubertal juveniles has been overlooked because it is commonly thought that the gonads are quiescent during the juvenile period. However, the juvenile gonads secrete measurable amounts of steroids, and we have recently found that prepubertal ovariectomy decreases anxiety-like behavior of juvenile Siberian hamsters in the light/dark box test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!