Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Efficient and durable oxygen evolution reaction (OER) catalysts are highly required for the cost-effective generation of clean energy from water splitting. For the first time, an integrated OER electrode based on one-step direct growth of metallic iron-nickel sulfide nanosheets on FeNi alloy foils (denoted as FeNi S /FeNi) is reported, and the origin of the enhanced OER activity is uncovered in combination with theoretical and experimental studies. The obtained FeNi S /FeNi electrode exhibits highly catalytic activity and long-term stability toward OER in strong alkaline solution, with a low overpotential of 282 mV at 10 mA cm and a small Tafel slope of 54 mV dec . The excellent activity and satisfactory stability suggest that the as-made electrode provides an attractive alternative to noble metal-based catalysts. Combined with density functional theory calculations, exceptional OER performance of FeNi S /FeNi results from a combination of efficient electron transfer properties, more active sites, the suitable O evolution kinetics and energetics benefited from Fe doping. This work not only simply constructs an excellent electrode for water oxidation, but also provides a deep understanding of the underlying nature of the enhanced OER performance, which may serve as a guide to develop highly effective and integrated OER electrodes for water splitting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201604161 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!