The irregular appearance of planktonic algae blooms off the coast of southern California has been a source of wonder for over a century. Although large algal blooms can have significant negative impacts on ecosystems and human health, a predictive understanding of these events has eluded science, and many have come to regard them as ultimately random phenomena. However, the highly nonlinear nature of ecological dynamics can give the appearance of randomness and stress traditional methods-such as model fitting or analysis of variance-to the point of breaking. The intractability of this problem from a classical linear standpoint can thus give the impression that algal blooms are fundamentally unpredictable. Here, we use an exceptional time series study of coastal phytoplankton dynamics at La Jolla, CA, with an equation-free modeling approach, to show that these phenomena are not random, but can be understood as nonlinear population dynamics forced by external stochastic drivers (so-called "stochastic chaos"). The combination of this modeling approach with an extensive dataset allows us to not only describe historical behavior and clarify existing hypotheses about the mechanisms, but also make out-of-sample predictions of recent algal blooms at La Jolla that were not included in the model development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.1804 | DOI Listing |
J Paleolimnol
December 2024
Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
Unlabelled: Cyanobacteria are ubiquitous aquatic organisms with a remarkable evolutionary history reaching as far as 1.9 Ga. They play a vital role in ecosystems yet also raise concerns due to their association with harmful algal blooms.
View Article and Find Full Text PDFISME Commun
January 2025
Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.
Harmful Algal Blooms (HABs) of the toxigenic dinoflagellate (KB) are pivotal in structuring the ecosystem of the Gulf of Mexico (GoM), decimating coastal ecology, local economies, and human health. Bacterial communities associated with toxigenic phytoplankton species play an important role in influencing toxin production in the laboratory, supplying essential factors to phytoplankton and even killing blooming species. However, our knowledge of the prevalence of these mechanisms during HAB events is limited, especially for KB blooms.
View Article and Find Full Text PDFSci Total Environ
January 2025
Laboratorio de Limnología, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana, Bogotá, Colombia.
In this study, we focused on Lake Tota (Colombia) as a model for investigating the impact of anthropogenic activities on lake productivity. Two sediment cores collected from the two main basins of the lake (Lago Grande and Lago Chico) were dated using alpha spectrometry for Pb. Changes in organic matter, carbon and nitrogen isotope ratios, C:N ratios, diatoms and elemental fractions were examined as indicators of productivity.
View Article and Find Full Text PDFChemosphere
January 2025
U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA. Electronic address:
Cyanobacteria harmful algal blooms in lakes are primarily driven by nutrient and temperature conditions, yet the interplay of these abiotic factors with microbial community dynamics during bloom events is complex and challenging to unravel. Despite advances through deep sequencing approaches, the underlying transcriptomic changes occurring within blooming and non-blooming taxa remains an actively expanding area of study. In this work, we examined a spring-summer bloom event in Anderson Lake, WA, which has experienced recurring annual blooms dominated by the filamentous, anatoxin-a producing, diazotroph: Dolichospermum sp.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China. Electronic address:
Copper is used to treat algal blooms, macrophyte infestations and other environmental issues, but its rising ambient levels harm aquatic animals, especially their intestines. However, its impact on turtles' digestive health is not well understood, and the risks are unclear. This study investigates the effects of copper on the intestinal health of Chinese stripe-necked turtle, focusing on histomorphology, mucosal barrier function, gene expression, and gut microbiota.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!