Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9-35.8 times original values. Using Shields criterion, river-flow of 0.15-0.69 m³/s could cause bed particle entrainment; while ~1.57-7.23 m³/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369142 | PMC |
http://dx.doi.org/10.3390/ijerph14030306 | DOI Listing |
Environ Pollut
January 2025
Federal Institute of Maranhão, Campus Barreirinhas, Rodovia MA-225, KM 04, CEP:65590-000, Barreirinhas, Maranhão, Brazil.
Dredging in estuarine systems significantly impacts phytoplankton communities, with suspended particulate matter (SPM) and dissolved aluminum (Al) serving as indicators of disturbance intensity. This study assessed the effects of dredging in the São Marcos Estuarine Complex (SMEC), Brazil, over three distinct events (2015, 2017, 2020), involving varying sediment volumes and climatic influences. Prolonged dredging operations and increased sediment volumes led to a pronounced 43.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China. Electronic address:
Microplastics (MPs) are ubiquitous in aquatic environments, threatening the security of aquatic organisms. Identifying the emission node and hot spot of MPs holds significant importance in the pollution control of MPs. Wastewater is widely recognized as sink and source of MPs, while the direct evidence is insufficient.
View Article and Find Full Text PDFSci Total Environ
January 2025
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Laboratório de Ecologia de Bentos, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.
Understanding the patterns and mechanisms of biodiversity and its organization in space is essential for developing effective conservation strategies. Zeta diversity is an index of how taxa are shared by several sites, providing information on how ecological filters, including anthropogenic disturbances, influence biodiversity distribution. This study documents how anthropogenic disturbances at multiple spatial extents affect the spatial variation of benthic macroinvertebrate assemblages in lotic ecosystems.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Biology, University of Southern Denmark, Odense, Denmark.
The concept of "blue carbon" is, in this study, critically evaluated with respect to its definitions, measuring approaches, and time scales. Blue carbon deposited in ocean sediments can only counteract anthropogenic greenhouse gas (GHG) emissions if stored on a long-term basis. The focus here is on the coastal blue carbon ecosystems (BCEs), mangrove forests, saltmarshes, and seagrass meadows due to their high primary production and large carbon stocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!