Rapid Screening Technique To Identify Sudan Dyes (I to IV) in Adulterated Tomato Sauce, Chilli Powder, and Palm Oil by Innovative High-Resolution Mass Spectrometry.

J Food Prot

1 Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta; Genetics and Immunobiochemistry Laboratory, via Bologna 148, 10154, Turin, Italy (ORCID: http://orcid.org/0000-0002-6791-657X [F.M.]).

Published: April 2017

AI Article Synopsis

  • Sudan dyes are synthetic azo dyes that are harmful and prohibited in food, yet they often appear as contaminants in food products like tomato sauce and chilli powder.
  • The study introduces a new, efficient screening method that uses mass spectrometry for detecting Sudan dyes without needing complex sample preparation or liquid chromatography, achieving high accuracy and sensitivity.
  • This method was able to identify dyes in real adulterated samples and found no contamination in commercial products tested, making it a quick and cost-effective option for food safety analysis.

Article Abstract

Sudan dyes are synthetic azo dyes used by industry in a variety of applications. Classified as carcinogenic, they are not allowed in foodstuffs; however, their presence as adulterants in food products has been regularly reported. Here, we describe an innovative screening method to detect Sudan I, II, III, and IV in tomato sauce, palm oil, and chilli powder. The method entails minimal sample preparation, completely avoiding the liquid chromatography phase, followed by detection and identification through atmospheric pressure chemical ionization time-of-flight mass spectrometry, in positive ionization mode. Analytes were efficiently identified and detected in samples, fortified both with individual analytes and with their mixture, with an error in mass identification less than 5 ppm. Limits of identification of the analytes in the fortified samples were 0.5 to 1 mg/kg, depending on the dye and matrix. The method had a linear range of 0.05 to 5 mg/kg and good linear relationships (R > 0.98). Repeatability was satisfactory, with a coefficient of variation lower than 20%. The method was applied to detect the dyes in real adulterated chilli samples, previously found positive by confirmatory high-performance liquid chromatography-mass spectrometry and ELISA, and in commercial products purchased from supermarkets. In all positive samples, analytes were correctly identified with an error in mass identification lower than 5 ppm, while none of the 45 commercial samples analyzed were found to be contaminated. The proposed new assay is sensitive, with a limit of identification, for all the three matrices, complying with the limits defined by the European Union (0.5 to 1 mg/kg) for analytical methods. Compared with conventional methods, the new assay is rapid and inexpensive and characterized by a high throughput; thus, it could be suitable as screening technique to identify Sudan dyes in adulterated food products.

Download full-text PDF

Source
http://dx.doi.org/10.4315/0362-028X.JFP-16-313DOI Listing

Publication Analysis

Top Keywords

sudan dyes
12
screening technique
8
technique identify
8
identify sudan
8
dyes adulterated
8
tomato sauce
8
chilli powder
8
palm oil
8
mass spectrometry
8
food products
8

Similar Publications

Comprehensive Investigations About the Binding Interactions of Sudan Dyes with DNA by Spectroscopy and Docking Methods.

J Fluoresc

January 2025

School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province, 224007, People's Republic of China.

Sudan dyes are recognized as carcinogens, which are strictly determined whether there are them in food for food safety. Hence, in order to understand the mechanism at the molecular level, this work investigated the binding interactions of Sudan I-IV with calfthy mus DNA. The synchronous fluorescence and UV-vis spectral results suggested the complex formation between Sudan I-IV and ct-DNA.

View Article and Find Full Text PDF

Azo food dyes are prohibited in most countries, but their injudicious use is still reported particularly in the developing Nations. Continuous use of contaminated food raises health concerns and given this the present study designed to investigate the effects of 3 non-permitted azo dyes (metanil yellow - MY, malachite green - MG, and sudan III - SIII) on neurobehavioral, neurochemicals, mitochondrial dysfunction, oxidative stress, and histopathological changes in the corpus striatum of rats. Rats were grouped and treated with MY (430 mg/kg), MG (13.

View Article and Find Full Text PDF

In this work, a new supramolecular solvent (SUPRAS) was prepared for the first time using hexafluorobutanol (HFB) and farnesol (FO). FO acts as an amphiphile and HFB as a coacervation inducer and density regulator. The method of dispersive liquid-liquid microextraction followed by high-performance liquid chromatography, supported by a vortex technique, was established using the prepared SUPRAS for the determination of Sudan dyes in aqueous samples.

View Article and Find Full Text PDF

Octylamine-oxalic acid (Oct-Oxa) deep eutectic solvent for the separation of Sudan II from food samples.

Food Chem

February 2025

Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Türkiye; Technology Research and Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Türkiye; United Methodist University, The College of Natural & Applied Sciences, Monrovia, Liberia.

This work presents a novel deep eutectic solvent (DES) formed of octylamine and oxalic acid (Oct-Oxa) that was effectively used to separate Sudan II dye from food and water samples. The prepared DES was characterized using Fourier transform infrared spectroscopy (FT-IR) and carbon-13 nuclear magnetic resonance (C NMR). Key parameters were optimized, including a short ultrasonication time of 30 s and a very low DES volume of only 500 μL that could be separated within one minute of centrifugation.

View Article and Find Full Text PDF

The use of chemically modified nanocomposites for atherosclerotic plaques can open up new opportunities for studying their effect on changing the structure of the plaque itself. It was shown on the model of the greater omentum of two groups of experimental animals (rats n = 30), which were implanted with Fe@C NPs nanocomposites of 10-30 Nm size into the omentum area. Group 1 (n = 15) consisted of animals that were implanted with chemically modified Fe@C NPs nanocomposites and control group 2 (n = 15) was with non-modified Fe@C NPs nanocomposites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!