The present study was designed to investigate whether large conductance Ca -activated K (BK) channels were regulated by epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase. BK current and channel tyrosine phosphorylation level were measured in BK-HEK 293 cells expressing both functional α-subunits and the auxiliary β1-subunits using electrophysiology, immunoprecipitation and Western blotting approaches, respectively, and the function of rat cerebral basilar arteries was determined with a wire myography system. We found that BK current in BK-HEK 293 cells was increased by the broad spectrum protein tyrosine kinase (PTK) inhibitor genistein and the selective EGFR tyrosine kinase inhibitor AG556, one of the known tyrphostin. The effect of genistein or AG556 was antagonized by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. On the other hand, orthovanadate or EGF decreased BK current, and the effect was counteracted by AG556. The tyrosine phosphorylation level of BK channels (α- and β1-subunits) was increased by EGF and orthovanadate, while decreased by genistein and AG556, and the reduced tyrosine phosphorylation of BK channels by genistein or AG556 was reversed by orthovanadate. Interestingly, AG556 induced a remarkable enhancement of BK current in rat cerebral artery smooth muscle cells and relaxation of pre-contracted rat cerebral basilar arteries with denuded endothelium, and these effects were antagonized by the BK channel blocker paxilline or orthovanadate. These results demonstrate that tyrosine phosphorylation of BK channels by EGFR kinase decreases the channel activity, and inhibition of EGFR kinase by AG556 enhances the channel activity and dilates rat cerebral basilar arteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5571560 | PMC |
http://dx.doi.org/10.1111/jcmm.13103 | DOI Listing |
Long non-coding RNAs (lncRNAs) and RNA N⁶-methyladenosine (m A) have been linked to leukemia drug resistance. However, whether and how lncRNAs and m A coordinately regulate resistance remain elusive. Here, we show that many differentially expressed lncRNAs enrich m A, and more lncRNAs tend to have higher m A content in CML cells resistant to tyrosine kinase inhibitors (TKIs).
View Article and Find Full Text PDFRecent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown.
View Article and Find Full Text PDFKidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.
View Article and Find Full Text PDFTyrosine phosphorylation is an important post-translational modification that regulates many biochemical signaling networks in multicellular organisms. To date, 46,000 tyrosines have been observed in human proteins, but relatively little is known about the function and regulation of most of these sites. A major challenge has been producing recombinant phospho-proteins in order to test the effects of phosphorylation.
View Article and Find Full Text PDFFront Immunol
January 2025
Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
Introduction: Non-small cell lung cancer (NSCLC) constitutes approximately 80-85% of cancer-related fatalities globally, and direct and indirect comparisons of various therapies for NSCLC are lacking. In this study, we aimed to compare the efficacy and safety of immune checkpoint inhibitors (ICIs) in patients with epidermal growth factor receptor (EGFR)-mutated NSCLC.
Methods: The electronic databases were systematically searched from inception until March 18, 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!