Osteoclasts are multinuclear giant cells responsible for bone resorption in lytic bone diseases such as osteoporosis, arthritis, periodontitis, and bone tumors. Due to the severe side-effects caused by the currently available drugs, a continuous search for novel bone-protective therapies is essential. Artesunate (Art), the water-soluble derivative of artemisinin has been investigated owing to its anti-malarial properties. However, its effects in osteoclastogenesis have not yet been reported. In this study, Art was shown to inhibit the nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, the mRNA expression of osteoclastic-specific genes, and resorption pit formation in a dose-dependent manner in primary bone marrow-derived macrophages cells (BMMs). Furthermore, Art markedly blocked the RANKL-induced osteoclastogenesis by attenuating the degradation of IκB and phosphorylation of NF-κB p65. Consistent with the in vitro results, Art inhibited lipopolysaccharide (LPS)-induced bone resorption by suppressing the osteoclastogenesis. Together our data demonstrated that Art inhibits RANKL-induced osteoclastogenesis by suppressing the NF-κB signaling pathway and that it is a promising agent for the treatment of osteolytic diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.25907 | DOI Listing |
iScience
December 2024
Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
Peroxiredoxin 1 (PRDX1), an intracellular antioxidant enzyme, has emerged as a regulator of inflammatory responses via Toll-like receptor 4 (TLR4) signaling. Despite this, the mechanistic details of the PRDX1-TLR4 axis and its impact on osteoclast differentiation remain elusive. Here, we show that PRDX1 suppresses RANKL-induced osteoclast differentiation.
View Article and Find Full Text PDFMol Med
December 2024
Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
Background: Bone remodeling is a critical process that maintains skeletal integrity, orchestrated by the balanced activities of osteoclasts, which resorb bone, and osteoblasts, which form bone. Osteoclastogenesis, the formation of osteoclasts, is primarily driven by NFATc1, a process activated through c-Fos and NF-κB signaling pathways in response to receptor activator of nuclear factor κB ligand (RANKL). Dysregulation of RANKL signaling is a key contributor to pathological bone loss, as seen in conditions such as osteoporosis.
View Article and Find Full Text PDFImmunobiology
December 2024
Department of Periodontology, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410004, China. Electronic address:
Macrophages play a pivotal role in regulating inflammatory response in periodontitis, a condition characterized by excessive osteoclast differentiation. This study aimed to investigate whether exosomes derived from M2 macrophages regulate osteoclast differentiation and to identify the underlying molecular mechanisms. Exosomes were isolated from M2 macrophages and used to treat osteoclasts.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
Microbial metabolites provide numerous benefits to the human body but can also contribute to diseases such as obesity, diabetes, cancer, and bone disorders. However, the role of imidazole propionate (ImP), a histidine-derived metabolite produced by the intestinal microbiome, in bone metabolism and the development of osteoporosis is still poorly understood. In this study, we investigated the role of ImP and its underlying mechanisms in regulating bone homeostasis.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, PR China. Electronic address:
Postmenopausal osteoporosis is a common degenerative disease, with suboptimal clinical outcomes. The targets of current therapeutic agents are both nonspecific and diverse. We synthesized a novel nanoparticle (NP), ALN@BMSCM@PLGA-TK-PEG-SS31.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!