The neurology of male sexuality has been poorly studied owing to difficulties in studying brain circuitry in humans. Dopamine (DA) is essential for both physiological and behavioural responses, including the regulation of sexuality. Previous studies have revealed that alterations in DA synthesis in dopaminergic neurons can induce male-male courtship behaviour, while increasing DA levels in the protocerebral posteriolateral dopaminergic cluster neuron 2ab (PPL2ab) may enhance the intensity of male courtship sustainment in Drosophila. Here we report that changes in the ability of the PPL2ab in the central nervous system (CNS) to produce DA strongly impact male-male courtship in D. melanogaster. Intriguingly, the DA-synthesizing abilities of these neurons appear to affect both the courting activities displayed by male flies and the sex appeal of male flies for other male flies. Moreover, the observed male-male courtship is triggered primarily by target motion, yet chemical cues can replace visual input under dark conditions. This is interesting evidence that courtship responses in male individuals are controlled by PPL2ab neurons in the CNS. Our study provides insight for subsequent studies focusing on sexual circuit modulation by PPL2ab neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353583PMC
http://dx.doi.org/10.1038/srep44595DOI Listing

Publication Analysis

Top Keywords

male-male courtship
16
ppl2ab neurons
12
male flies
12
courtship
6
male
6
ppl2ab
5
neurons
5
active passive
4
passive sexual
4
sexual roles
4

Similar Publications

Males display phenotypic characteristics that may be associated with their quality, allowing non-random mating and post-copulatory female choice. In the damselfly , males have a conspicuous pink colouration in the underside of abdominal segments 8-10, which they exhibit during pre- and post-copulatory courtship. We hypothesized that this colouration functions to increase male mating success and/or to elicit females to oviposit.

View Article and Find Full Text PDF

Animals plastically adjust their physiological and behavioural phenotypes to conform to their social environment-social niche conformance. The degree of sexual competition is a critical part of the social environment to which animals adjust their phenotypes, but the underlying genetic mechanisms are poorly understood. We conducted a study to investigate how differences in sperm competition risk affect the gene expression profiles of the testes and two brain areas (posterior pallium and optic tectum) in breeding male zebra finches (Taeniopygia castanotis).

View Article and Find Full Text PDF

Tympanal ears mediate male-male competition, courtship and mating success in butterflies.

R Soc Open Sci

March 2024

Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore.

The presence of intra-specific acoustic communication in diurnal butterflies is not well established. Here, we examined the function of the tympanal ear (Vogel's organ, VO) in the seasonally polyphenic butterfly in the context of sexual signalling. We investigated how the VO and the flanking enlarged veins, which are suggested sound resonance chambers, scale with wing size across sexes and seasonal forms, and how disruptions to the VO alter courtship behaviour and mating outcomes.

View Article and Find Full Text PDF

The neurogenomic mechanisms mediating male-male reproductive cooperative behaviours remain unknown. We leveraged extensive transcriptomic and behavioural data on a neotropical bird species (Pipra filicauda) that performs cooperative courtship displays to understand these mechanisms. In this species, the cooperative display is modulated by testosterone, which promotes cooperation in non-territorial birds, but suppresses cooperation in territory holders.

View Article and Find Full Text PDF

Replenishment of Drosophila Male Pheromone After Mating.

J Chem Ecol

April 2024

Centre Des Sciences du Goût Et de L'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000, Dijon, France.

Insect exocrine gland products can be involved in sexual communication, defense, territory labelling, aggregation and alarm. In the vinegar fly Drosophila melanogaster the ejaculatory bulb synthesizes and releases 11-cis-Vaccenyl acetate (cVa). This pheromone, transferred to the female during copulation, affects aggregation, courtship and male-male aggressive behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!