Criticality-Enhanced Magnetocaloric Effect in Quantum Spin Chain Material Copper Nitrate.

Sci Rep

Department of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), Beihang University, Beijing 100191, China.

Published: March 2017

In this work, a systematic study of Cu(NO)·2.5 HO (copper nitrate hemipentahydrate, CN), an alternating Heisenberg antiferromagnetic chain model material, is performed with multi-technique approach including thermal tensor network (TTN) simulations, first-principles calculations, as well as magnetization measurements. Employing a cutting-edge TTN method developed in the present work, we verify the couplings J = 5.13 K, α = 0.23(1) and Landé factors g= 2.31, g = 2.14 in CN, with which the magnetothermal properties have been fitted strikingly well. Based on first-principles calculations, we reveal explicitly the spin chain scenario in CN by displaying the calculated electron density distributions, from which the distinct superexchange paths are visualized. On top of that, we investigated the magnetocaloric effect (MCE) in CN by calculating its isentropes and magnetic Grüneisen parameter. Prominent quantum criticality-enhanced MCE was uncovered near both critical fields of intermediate strengths as 2.87 and 4.08 T, respectively. We propose that CN is potentially a very promising quantum critical coolant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353727PMC
http://dx.doi.org/10.1038/srep44643DOI Listing

Publication Analysis

Top Keywords

spin chain
8
copper nitrate
8
first-principles calculations
8
criticality-enhanced magnetocaloric
4
magnetocaloric quantum
4
quantum spin
4
chain material
4
material copper
4
nitrate work
4
work systematic
4

Similar Publications

Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.

View Article and Find Full Text PDF

A fluoroalkyl-containing electron acceptor (Y-SSM) is designed and synthesized to control the orientation of the benchmark non-fullerene acceptor Y6 in thin films. Due to the low surface energy of the two fluoroalkyl chains at the terminal part of Y-SSM, it spontaneously segregates to the film surface during spin coating, forming a monolayer of edge-on oriented Y-SSM. The Y-SSM monolayer leads to crystallization of the underlying Y6 to induce a standing-up orientation in the bulk of the films, which is strikingly different from pure Y6 films that tend to be a face-on orientation.

View Article and Find Full Text PDF

Exploring the Gating Mechanism of the Human Copper Transporter, hCtr1, Using EPR Spectroscopy.

Biomolecules

January 2025

Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.

Ctr1 is a membrane-spanning homotrimer that facilitates copper uptake in eukaryotic cells with high affinity. While structural details of the transmembrane domain of human Ctr1 have been elucidated using X-ray crystallography and cryo-EM, the transfer mechanisms of copper and the conformational changes that control the gating mechanism remain poorly understood. The role of the extracellular N-terminal domains is particularly unclear due to the absence of a high-resolution structure of the full-length hCtr1 protein and limited biochemical and biophysical characterization of the transporter in solution and in cell.

View Article and Find Full Text PDF

Advancements in printing techniques are essential for fabricating next-generation displays. Lead halide perovskites demonstrate great potential as light emitters of solution-processed light-emitting diodes (LEDs). In particular, the perovskite/polymer composite emitters exhibit exceptional luminescent characteristics, mechanical flexibility, and environmental stability due to the improved film morphologies and defect passivation achieved through the introduction of polymer additives.

View Article and Find Full Text PDF

Review of honeycomb-based Kitaev materials with zigzag magnetic ordering.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

The search for a Kitaev quantum spin liquid in crystalline magnetic materials has fueled intense interest in the two-dimensional honeycomb systems. Many promising candidate Kitaev systems are characterized by a long-range-ordered magnetic structure with an antiferromagnetic zigzag-type order, where the static moments form alternating ferromagnetic chains. Recent experiments on high-quality single crystals uncovered the existence of intriguing multi-k magnetic structures, which evolved from zigzag structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!